uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Large-Amplitude High-Frequency Waves at Earth's Magnetopause
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.ORCID iD: 0000-0002-1046-746x
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.ORCID iD: 0000-0003-1654-841x
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.ORCID iD: 0000-0001-5550-3113
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.ORCID iD: 0000-0003-3725-4920
Show others and affiliations
2018 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 4, p. 2630-2657Article in journal (Refereed) Published
Abstract [en]

Large-amplitude waves near the electron plasma frequency are found by the Magnetospheric Multiscale (MMS) mission near Earth's magnetopause. The waves are identified as Langmuir and upper hybrid (UH) waves, with wave vectors either close to parallel or close to perpendicular to the background magnetic field. The waves are found all along the magnetopause equatorial plane, including both flanks and close to the subsolar point. The waves reach very large amplitudes, up to 1Vm(-1), and are thus among the most intense electric fields observed at Earth's magnetopause. In the magnetosphere and on the magnetospheric side of the magnetopause the waves are predominantly UH waves although Langmuir waves are also found. When the plasma is very weakly magnetized only Langmuir waves are likely to be found. Both Langmuir and UH waves are shown to have electromagnetic components, which are consistent with predictions from kinetic wave theory. These results show that the magnetopause and magnetosphere are often unstable to intense wave activity near the electron plasma frequency. These waves provide a possible source of radio emission at the magnetopause.

Place, publisher, year, edition, pages
AMER GEOPHYSICAL UNION , 2018. Vol. 123, no 4, p. 2630-2657
Keywords [en]
plasma waves, magnetopause
National Category
Fusion, Plasma and Space Physics Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:uu:diva-357762DOI: 10.1002/2017JA025034ISI: 000433498400012OAI: oai:DiVA.org:uu-357762DiVA, id: diva2:1241214
Funder
Swedish National Space Board, 175/15Available from: 2018-08-23 Created: 2018-08-23 Last updated: 2018-08-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Graham, Daniel B.Vaivads, AndrisKhotyaintsev, Yuri V.André, Mats

Search in DiVA

By author/editor
Graham, Daniel B.Vaivads, AndrisKhotyaintsev, Yuri V.André, Mats
By organisation
Swedish Institute of Space Physics, Uppsala Division
In the same journal
Journal of Geophysical Research - Space Physics
Fusion, Plasma and Space PhysicsAstronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 19 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf