uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Estimating irradiated nuclear fuel characteristics by nonlinear multivariate regression of simulated gamma-ray emissions
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.ORCID iD: 0000-0001-7370-6539
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.ORCID iD: 0000-0002-5133-6829
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Show others and affiliations
2018 (English)In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 897, p. 85-91Article in journal (Refereed) Published
Abstract [en]

In addition to verifying operator declared parameters of spent nuclear fuel, the ability to experimentally infer such parameters with a minimum of intrusiveness is of great interest and has been long-sought after in the nuclear safeguards community. It can also be anticipated that such ability would be of interest for quality assurance in e.g. recycling facilities in future Generation IV nuclear fuel cycles. One way to obtain information regarding spent nuclear fuel is to measure various gamma-ray intensities using high-resolution gamma-ray spectroscopy. While intensities from a few isotopes obtained from such measurements have traditionally been used pairwise, the approach in this work is to simultaneously analyze correlations between all available isotopes, using multivariate analysis techniques. Based on this approach, a methodology for inferring burnup, cooling time, and initial fissile content of PWR fuels using passive gamma-ray spectroscopy data has been investigated. PWR nuclear fuels, of UOX and MOX type, and their gamma-ray emissions, were simulated using the Monte Carlo code Serpent. Data comprising relative isotope activities was analyzed with decision trees and support vector machines, for predicting fuel parameters and their associated uncertainties. From this work it may be concluded that up to a cooling time of twenty years, the 95% prediction intervals of burnup, cooling time and initial fissile content could be inferred to within approximately 7 MWd/kgHM, 8 months, and 1.4 percentage points, respectively. An attempt aiming to estimate the plutonium content in spent UOX fuel, using the developed multivariate analysis model, is also presented. The results for Pu mass estimation are promising and call for further studies.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE BV , 2018. Vol. 897, p. 85-91
Keywords [en]
Nuclear safeguards, Spent nuclear fuel, Gamma-ray, Multivariate analysis, Nonlinear regression
National Category
Subatomic Physics
Identifiers
URN: urn:nbn:se:uu:diva-357374DOI: 10.1016/j.nima.2018.04.034ISI: 000433206800014OAI: oai:DiVA.org:uu-357374DiVA, id: diva2:1241723
Available from: 2018-08-24 Created: 2018-08-24 Last updated: 2018-08-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Åberg Lindell, MatildaAndersson, PeterGrape, SophieHåkansson, AneEriksson, Måns

Search in DiVA

By author/editor
Åberg Lindell, MatildaAndersson, PeterGrape, SophieHåkansson, AneEriksson, Måns
By organisation
Applied Nuclear PhysicsDepartment of Statistics
In the same journal
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Subatomic Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 72 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf