uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Highly translucent and strong ZrO2-SiO2 nanocrystalline glass ceramic prepared by sol-gel method and spark plasma sintering with fine 3D microstructure for dental restoration
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.ORCID iD: 0000-0001-9529-650X
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.ORCID iD: 0000-0002-7356-3002
2017 (English)In: Journal of the European Ceramic Society, ISSN 0955-2219, E-ISSN 1873-619X, Vol. 37, no 13, p. 4067-4081Article in journal (Refereed) Published
Abstract [en]

Balance of better mechanical strength and good translucency for dental restorative materials is always a challenge. A translucent glass ceramic/ceramic with improved mechanical properties or a strong glass ceramic/ceramic with good translucency would therefore be interesting for dental application. Nanocrystalline glass ceramics (NCGC) attract a lot attention because of their superior optical and mechanical properties. This study aims to obtain ZrO2-SiO2 nanocrystalline glass-ceramic that possesses high mechanical strength as well as excellent translucency by controlling the content, size, and connection of nanocrystalline ZrO2 in a ZrO2-SiO2 glass-ceramic material. Toward this end, well-homogenized nano powders with three different compositions, 45%ZrO2-55%SiO2 (molar ratio, 45Zr), 55%ZrO2-45%SiO2 (55Zr), and 65%ZrO2-35%SiO2 (65Zr), were synthesized, followed by a fast sintering process. Highly translucent nanocrystalline glass ceramics composed of tetragonal ZrO2 were obtained. Samples with high zirconia content showed that the structure of the skeleton was predominately built by nano-sized ellipsoidal ZrO2 particles bonded by grain boundaries, with amorphous SiO2 filling the voids between the ZrO2 particles. The achieved flexural strength measured by piston-on-three-ball test was as high as 1014 MPa. To our knowledge, this is one of the highest flexural strength values of glass ceramics ever reported, which is higher than transparent zirconia and alumina ceramics. The 3D structure of nanocrystalline zirconia in silica matrix did enhance the flexural strength of the NCGC. The results of this study suggest that the new ZrO2-SiO2 NCGC has great potential of using as dental restoration.

Place, publisher, year, edition, pages
2017. Vol. 37, no 13, p. 4067-4081
Keywords [en]
Nanocrystalline glass ceramics, ZrO2-SiO2, Translucency, High strength, 3D microstructure
National Category
Ceramics
Identifiers
URN: urn:nbn:se:uu:diva-360206DOI: 10.1016/j.jeurceramsoc.2017.05.039ISI: 000404704800027OAI: oai:DiVA.org:uu-360206DiVA, id: diva2:1247804
Funder
Carl Tryggers foundation Available from: 2018-09-13 Created: 2018-09-13 Last updated: 2018-09-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Fu, LeEngqvist, HåkanXia, Wei

Search in DiVA

By author/editor
Fu, LeEngqvist, HåkanXia, Wei
By organisation
Applied Materials Sciences
In the same journal
Journal of the European Ceramic Society
Ceramics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 93 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf