uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multicomponent Hf-Nb-Ti-V-Zr nitride coatings by reactive magnetron sputter deposition
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Uppsala Univ, Angstrom Lab, Dept Chem, Inorgan Res Programme, Box 538, SE-75121 Uppsala, Sweden.ORCID iD: 0000-0001-7266-0022
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.ORCID iD: 0000-0001-8617-4834
2018 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 349, p. 529-539Article in journal (Refereed) Published
Abstract [en]

Multicomponent nitride coatings of the Hf-Nb-Ti-V-Zr system with different Hf content (0-18 at.%) were deposited using reactive dc magnetron sputtering. Coatings with lower Hf content (0-7 at.%) were found to consist of a single solid solution phase with NaCl-type structure (space group Fm-3m). Coatings with higher Hf content (10-18 at.%) showed a two-phase material consisting of cubic Fm-3m and tetragonal I4/m:run solid solution phase. The lattice distortion, estimated by calculating the delta-parameter under the assumption of a single solid solution phase, varied between 3.8 and 4.0% and slightly decreased with increasing Hf content. SEM and TEM cross section images showed a columnar microstructure with columns that were frayed on the surface or throughout the whole column. The column size decreased as Hf content increased. The hardness increased from 8 to 19 GPa with increased Hf content, which most probably is related to the change in microstructure rather than change in lattice distortion. The electrical resistivity for all samples ranged between 231 and 286 mu Omega cm.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE SA , 2018. Vol. 349, p. 529-539
Keywords [en]
Multiprincipal element nitride, High-entropy nitride, Two-phase nitride, Transition metal nitride, Tetragonal distortion, Thin films
National Category
Materials Chemistry Manufacturing, Surface and Joining Technology
Identifiers
URN: urn:nbn:se:uu:diva-362098DOI: 10.1016/j.surfcoat.2018.06.030ISI: 000441492600056OAI: oai:DiVA.org:uu-362098DiVA, id: diva2:1252429
Funder
Swedish Research Council, C0514401Swedish Foundation for Strategic Research , RIF14-0053Available from: 2018-10-01 Created: 2018-10-01 Last updated: 2019-09-08Bibliographically approved
In thesis
1. Reactive Sputtering of Complex Multi-component Nitride Thin Films
Open this publication in new window or tab >>Reactive Sputtering of Complex Multi-component Nitride Thin Films
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The ever-increasing demand on improvement of protective nitride thin films has led to an expansion of the research field into multi-element based materials. The work in this thesis has focused on exploring new complex, multi-component nitride thin films based on three different material systems: Al-Ge-N, Hf-Nb-Ti-V-Zr-N and Al-Cr-Nb-Y-Zr-N. All films were synthesised by reactive dc magnetron sputtering and characterised with regard to structure and material properties, in particular the mechanical, optical and corrosion properties.

The Al-Ge-O-N coatings exhibited amorphisation of the structure upon oxygen addition, via the formation of a crystalline (Al1-xGex)(N1-yOy) solid solution phase for low O contents. The mechanical properties were improved, and hardness values up to 29 GPa were achieved for low O and Ge concentrations, most likely due to nanocomposite hardening. The optical absorption edge was tuneable towards shorter and longer wavelengths with increasing the O and Ge content respectively. Annealing to 850°C showed indications of increased thermal stability for the quaternary Al-Ge-O-N films compared to the ternary Al-Ge-N films.

Coatings in the Hf-Nb-Ti-V-Zr-N system were found to be highly crystalline featuring a single solid solution phase with NaCl-type structure for low Hf content, whereas an additional, tetragonally distorted, phase appeared for higher Hf contents. The mechanical properties, such as hardness and Young’s modulus increased with increasing Hf content, although the values were relatively low compared to those for transition metal nitrides in general.

The Al-Cr-Nb-Y-Zr-N films also crystallised in the NaCl-type structure for the films with high nitrogen contents, i.e. between 46 and 51 at.%. However, partial elemental segregation was present, mainly for yttrium, both within the grains and in the column boundaries. XPS results suggested that yttrium was in a metallic state, while the remaining elements were present in a nitrided environment. The partial segregation could possibly explain the observed ductile behaviour of the nitride films. Electrochemical tests showed that the corrosion resistance increased with increased nitrogen content and the films performed in some cases better than a hyper-duplex stainless steel.

This thesis demonstrates that solid solutions are formed for three relatively different nitride material systems when varying the composition. The solubilities of the solid solution phases were found to be limited as shown by amorphisation, partial elemental segregation or formation of a two-phase material. The limited solubility and the phase changes can be used to design the material properties.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2019. p. 71
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1852
National Category
Inorganic Chemistry
Identifiers
urn:nbn:se:uu:diva-392704 (URN)978-91-513-0744-2 (ISBN)
Public defence
2019-10-25, Polhemssalen, Ångströmslaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2019-10-04 Created: 2019-09-08 Last updated: 2019-10-15

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Johansson, KristinaRiekehr, LarsFritze, StefanLewin, Erik

Search in DiVA

By author/editor
Johansson, KristinaRiekehr, LarsFritze, StefanLewin, Erik
By organisation
Inorganic ChemistrySolid State Electronics
In the same journal
Surface & Coatings Technology
Materials ChemistryManufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 151 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf