uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analytic model of comet ionosphere chemistry
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
2018 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 616, article id A59Article in journal (Refereed) Published
Abstract [en]

Context. We consider a weakly to moderately active comet and make the following simplifying assumptions: (i) The partial ionization frequencies are constant throughout the considered part of the coma. (ii) All species move radially outward with the same constant speed. (iii) Ion-neutral reactions affect the chemical composition of the ions, but ion removal through dissociative recombination with free electrons is negligible. Aims. We aim to derive an analytical model for the radial variation of the abundances of various cometary ions. Methods. We present two methods for retrieving the ion composition as a function of r. The first method, which has previously been used frequently, solves a series of coupled differential equations. The new method introduced here is based on probabilistic arguments and is analytical in nature. Results. For a pure H2O coma, the resulting closed-form expressions yield results that are identical to the standard method, but are computationally much less expensive. Conclusions. In addition to the computational simplicity, the analytical model provides insight into how the various abundances depend on parameters such as comet production rate, outflow speed, and reaction rate coefficients. It can also be used to investigate limiting cases. It cannot easily be extended to account for a radially varying flow speed or dissociative recombination in the way a code based on numerical integrations can.

Place, publisher, year, edition, pages
2018. Vol. 616, article id A59
Keywords [en]
comets: general, molecular processes
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:uu:diva-362647DOI: 10.1051/0004-6361/201832704ISI: 000441823300001OAI: oai:DiVA.org:uu-362647DiVA, id: diva2:1254176
Funder
Swedish National Space Board, 166/14Available from: 2018-10-08 Created: 2018-10-08 Last updated: 2018-10-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Vigren, Erik

Search in DiVA

By author/editor
Vigren, Erik
By organisation
Swedish Institute of Space Physics, Uppsala Division
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf