uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In Situ Methods for Understanding Charge Transport in a Conducting Redox Polymer
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanoteknologi och funktionella material)ORCID iD: 0000-0002-0036-9911
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanoteknologi och funktionella material)ORCID iD: 0000-0002-4726-4121
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.ORCID iD: 0000-0002-5496-9664
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanoteknologi och funktionella material)ORCID iD: 0000-0003-4126-4347
2018 (English)In: Materials Research Society. Fall meeting 2018. Boston: Excitons, Electrons and Ions in Organic Materials / [ed] MRS, Boston, 2018, article id EP05.01.07Conference paper, Oral presentation only (Refereed)
Abstract [en]

Organic materials can be used to ensure sustainable electrical energy storage, but since organic molecules are generally insulating conducting additives are commonly used to ensure electrical conductivity throughout the material. A different approach is to use conducting redox polymers (CRPs). CRPs consist of a redox active pendant group, used for its high capacity, attached to a conducting polymer backbone. The CRP presented here is aimed to be used as the positive electrode in a water-based organic battery. In this work we employ the well-studied conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with a quinone pendant group, a combination that we have proven can work in an all-organic proton battery.

1 Quinones constitute an attractive class of molecules as they possess a high charge storage capacity, show reversible redox chemistry, and are naturally occurring, e.g., in the electron transport chains in respiration and in photosynthesis. The aim of the study is to understand the charge transport properties of the CRP. The CRP studied is characterized by various in-situ electrochemical methods including conductance, Quartz Crystal Microbalance (QCM), UV-vis and Electron Paramagnetic Resonance (EPR). Based on the results the electron and ion transport during electrochemical redox conversion will be discussed. 1. Emanuelsson, R.; Sterby, M.; Strømme, M.; Sjödin, M., An All-Organic Proton Battery. J. Am. Chem. Soc. 2017, 139 (13), 4828-4834.

Place, publisher, year, edition, pages
Boston, 2018. article id EP05.01.07
National Category
Engineering and Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
URN: urn:nbn:se:uu:diva-366558OAI: oai:DiVA.org:uu-366558DiVA, id: diva2:1264907
Conference
MRS Fall meeting. Boston 2018
Available from: 2018-11-21 Created: 2018-11-21 Last updated: 2019-05-07

Open Access in DiVA

No full text in DiVA

Other links

https://www.mrs.org/fall2018

Authority records BETA

Sterby, MiaEmanuelsson, RikardStrömme, MariaSjödin, Martin

Search in DiVA

By author/editor
Sterby, MiaEmanuelsson, RikardStrömme, MariaSjödin, Martin
By organisation
Nanotechnology and Functional Materials
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 102 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf