uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrochemical Performance of Electron Withdrawing Group Substituted Benzoquinone and Benzoquinone-Functionalized Poly(3,4-ethylenedioxythiophene) Conducting Redox Polymer
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanoteknologi och funktionella material)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanoteknologi och funktionella material)ORCID iD: 0000-0002-4726-4121
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanoteknologi och funktionella material)ORCID iD: 0000-0003-4126-4347
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.ORCID iD: 0000-0002-5496-9664
2018 (English)In: MRS Fall meeting 2018: In Situ/Operando Analysis of Electrochemical Materials and Interfaces / [ed] MRS, Boston, 2018, article id CM03.09.03Conference paper, Published paper (Refereed)
Abstract [en]

Conducting redox polymers have been investigate massively as an efficient cathode material. Herein we synthesis a series of quinone substituted PEDOT conducting redox polymers and investigate the effect of electron withdrawing substitutions on the redox potential of quinone in the PEDOT backbone in two electrolyte 0.1M LiClO4/MeCN a. Elelctron withdrawing substitutions leads to an increase of the redox potential of quinone in LiClO4/MeCN . The conductivity of PEDOT backbone is hindered by the lithiated reduced quinone. In-situ uv-vis and EQCM is used to probe the exact PEDOT doping onset potential, confirming that conductivity of quinone is hindered by lithiated reduced quinone. In situ EQCM proves that mass change in the PEDOT doping region involves cation repulsion and dopants anion uptaken.

Place, publisher, year, edition, pages
Boston, 2018. article id CM03.09.03
National Category
Nano Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
URN: urn:nbn:se:uu:diva-366561OAI: oai:DiVA.org:uu-366561DiVA, id: diva2:1264920
Conference
MRS Fall meeting 2018. Boston November 2018
Available from: 2018-11-21 Created: 2018-11-21 Last updated: 2019-03-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

https://www.mrs.org/fall2018https://www.mrs.org/fall2018

Authority records BETA

Wang, HuanEmanuelsson, RikardSjödin, MartinStrömme, Maria

Search in DiVA

By author/editor
Wang, HuanEmanuelsson, RikardSjödin, MartinStrömme, Maria
By organisation
Nanotechnology and Functional Materials
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 68 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf