uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Digital pathology 2.0: a deep learning image analysis tool to identify lung cancer in human tissue samples
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.ORCID iD: 0000-0003-1210-5961
Show others and affiliations
2018 (English)In: Virchows Archiv, ISSN 0945-6317, E-ISSN 1432-2307, Vol. 473, p. S106-S107Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
Springer, 2018. Vol. 473, p. S106-S107
National Category
Cancer and Oncology
Identifiers
URN: urn:nbn:se:uu:diva-367145ISI: 000443414101401OAI: oai:DiVA.org:uu-367145DiVA, id: diva2:1266722
Available from: 2018-11-29 Created: 2018-11-29 Last updated: 2018-11-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Micke, Patrick

Search in DiVA

By author/editor
Micke, Patrick
By organisation
Clinical and experimental pathology
In the same journal
Virchows Archiv
Cancer and Oncology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf