uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Constraining Lyman continuum escape using Machine Learning
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Observational Astronomy.ORCID iD: 0000-0003-1096-2636
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Observational Astronomy.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
Show others and affiliations
2018 (English)In: Peering towards Cosmic Dawn, Cambridge University Press, 2018, Vol. 333, p. 254-258Conference paper, Published paper (Refereed)
Abstract [en]

The James Webb Space Telescope (JWST) will observe the rest-frame ultraviolet/optical spectra of galaxies from the epoch of reionization (EoR) in unprecedented detail. While escaping into the intergalactic medium, hydrogen-ionizing (Lyman continuum; LyC) photons from the galaxies will contribute to the bluer end of the UV slope and make nebular emission lines less prominent. We present a method to constrain leakage of the LyC photons using the spectra of high redshift (z greater than or similar to 6) galaxies. We simulate JWST/NIRSpec observations of galaxies at z = 6-9 by matching the fluxes of galaxies observed in the Frontier Fields observations of galaxy cluster MACS-J0416. Our method predicts the escape fraction f(esc) with a mean absolute error Delta f(esc) approximate to 0.14. The method also predicts the redshifts of the galaxies with an error approximate to 0.0003.

Place, publisher, year, edition, pages
Cambridge University Press, 2018. Vol. 333, p. 254-258
Series
IAU Symposium Proceedings Series, ISSN 1743-9213, E-ISSN 1743-9221 ; 12:S333
National Category
Astronomy, Astrophysics and Cosmology Computer and Information Sciences
Identifiers
URN: urn:nbn:se:uu:diva-374879DOI: 10.1017/S1743921317011322ISI: 000455232000051ISBN: 978-1-10719-246-1 (print)OAI: oai:DiVA.org:uu-374879DiVA, id: diva2:1282302
Conference
333rd Symposium of the International Astronomical Union (IAU), October 2–6, 2017, Dubrovnik, Croatia
Available from: 2018-05-08 Created: 2019-01-24 Last updated: 2019-06-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Zackrisson, ErikBinggeli, ChristianPelckmans, KristiaanCubo, Rubén

Search in DiVA

By author/editor
Zackrisson, ErikBinggeli, ChristianPelckmans, KristiaanCubo, Rubén
By organisation
Observational AstronomyDivision of Systems and ControlAutomatic control
Astronomy, Astrophysics and CosmologyComputer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 65 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf