uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental and computational investigation of multi U-tube boreholes
Istanbul Technical University, Energy Institute.
Istanbul Technical University, Energy Institute.ORCID iD: 0000-0002-7431-5115
2015 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 145, p. 163-171Article in journal (Refereed) Published
Abstract [en]

In ground source heat pump (GSHP) applications, borehole drilling cost constitutes an important part ofthe investment cost and it can be reduced by improving borehole performance. In vertical GSHP applications,usually double-U tube configurations are used to improve the heat transfer rate per unit length of aborehole, (unit HTR value). To determine the optimal number of U-tubes which maximizes the commercialand engineering benefits of multi U-tube applications, cost and performance analyses of multi U-tubeboreholes are crucial. In this study, a triple U-tube is used in a borehole of 50 m depth. Time variation ofunit HTR value of the borehole is experimentally measured when single, double and triple U-tubes are inoperation separately. Furthermore a computational model is calibrated by fitting the computationalresults to the experimental ones, and effects of using four and five U-tubes in a borehole are computationallyinvestigated. The relations between number of U tubes and time variation of unit HTR value ofa borehole as well as investment cost are analyzed. Long term borehole performance predictions aremade and compared for multi U-tube applications. Both experimental and computational results showedthat performance improvements are remarkable for 2U-tube and 3U-tube configurations while it isnearly insignificant for 4U and 5U ones. If the investment cost per thermal power is considered, 2U-tubeconfiguration is the optimal one if the prices of polyethylene pipes are relatively high, like in Turkey.When the cost of pipes decreases, then 3U-tube or even 4U–tube configuration can be the cheapestsolution.

Place, publisher, year, edition, pages
2015. Vol. 145, p. 163-171
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:uu:diva-380284OAI: oai:DiVA.org:uu-380284DiVA, id: diva2:1299045
Available from: 2019-03-26 Created: 2019-03-26 Last updated: 2019-03-26

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Sisman, Altug
In the same journal
Applied Energy
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf