uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hierarchical Porous Carbon Synthesized from Novel Porous Amorphous Calcium or Magnesium Citrate with Enhanced SF6 Uptake and SF6/N2 Selectivity
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.ORCID iD: 0000-0002-5496-9664
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.ORCID iD: 0000-0002-4072-4324
2019 (English)In: ACS Applied Nano Materials, ISSN 2574-0970, Vol. 2, no 2, p. 778-789Article in journal (Refereed) Published
Abstract [en]

The emission of greenhouse gases such as CO2and SF6 is believed to contribute significantly toward globalwarming. One way to reduce their release is by adsorption atpoint sources using a suitable adsorbent. In this work we presentthe synthesis of two hierarchical porous carbon materials(referred to as PC-CaCit and PC-MgCit) with a high uptake ofSF6 (5.23 mmol/g, 0 °C, 100 kPa) and a reasonable uptake ofCO2 (>3 mmol/g). PC-CaCit and PC-MgCit were obtained bypyrolysis of the most porous calcium citrate and magnesiumcitrate ever reported, which were synthesized by us. TheLangmuir specific surface area of PC-CaCit and PC-MgCit wasover 2000 m2/g (BET surface area also close to 2000 m2/g). Wecharacterized PC-CaCit and PC-MgCit using a range of advanced characterization techniques including N2 adsorption, highresolutionelectron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy. PC-CaCit and PC-MgCit alsoshowed a SF6-over-N2 selectivity of ∼33 at 0 °C (100 kPa), good cyclic performance, and moderately low heat of adsorption.The porous carbons synthesized in this work are good candidate adsorbents for greenhouse gases.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2019. Vol. 2, no 2, p. 778-789
Keywords [en]
porous carbon, SF6 adsorption, CO2 adsorption, amorphous calcium citrate, amorphous magnesium citrate
National Category
Nano Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
URN: urn:nbn:se:uu:diva-381054DOI: 10.1021/acsanm.8b02005ISI: 000469409900019OAI: oai:DiVA.org:uu-381054DiVA, id: diva2:1302216
Funder
Swedish Research CouncilKnut and Alice Wallenberg FoundationAvailable from: 2019-04-03 Created: 2019-04-03 Last updated: 2019-08-21Bibliographically approved
In thesis
1. Porous Amorphous Calcium Carbonate and Phosphate: Synthesis and Application
Open this publication in new window or tab >>Porous Amorphous Calcium Carbonate and Phosphate: Synthesis and Application
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The synthesis of porous amorphous calcium carbonate (ACC) and porous amorphous calcium phosphate (ACP) was developed in this thesis. Porous ACC with specific Brunauer–Emmett–Teller (BET) surface area of >350 m2/g was synthesized using a surfactant free approach. The high surface area of porous ACC was related to its nanostructure. Porous ACC was constructed with aggregated ACC nanoparticles that were less than 10 nm in diameter. The porosity and stability of porous ACC could be enhanced by introducing additives in the synthesis steps. The use of additives could also be used to control the crystallization of ACC to form vaterite particles with controllable morphologies. Porous ACC was tested as a drug carrier for two poorly soluble drugs (itraconazole and celecoxib). The porous ACC carrier was able to stabilize these drugs in their amorphous forms and enhance their release rate significantly when compared with the crystalline drug. Furthermore, porous ACC could also be used as a precursor/template for the synthesis of porous carbon. A porous carbon adsorbent with high uptake and high selectivity for greenhouse gases was produced. Porous ACP with a specific BET surface area of >400 m2/g was obtained by introducing phosphoric acid to the ACC suspension obtained during the synthesis of porous ACC. Similar to porous ACC, porous ACP was constructed of aggregated nanoparticles. ACP was found to be stable in ambient conditions for over 12 months and the stability could also be tailored by adjusting its composition. Porous ACP was cytocompatible and an effective drug carrier for alendronate - a bisphosphate drug for treatment of osteoporosis. The development of porous ACC and porous ACP as functional porous materials is summarized in this thesis.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2019. p. 71
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1844
Keywords
amorphous calcium carbonate, amorphous calcium phosphate, stabilization, crystallization, porous material, drug delivery, gas adsorption
National Category
Nano Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
urn:nbn:se:uu:diva-391172 (URN)978-91-513-0727-5 (ISBN)
Public defence
2019-10-09, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2019-09-18 Created: 2019-08-21 Last updated: 2019-10-15

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Sun, RuiStrömme, MariaCheung, Ocean

Search in DiVA

By author/editor
Sun, RuiStrömme, MariaCheung, Ocean
By organisation
Nanotechnology and Functional Materials
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf