uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ion substitution induced formation of spherical ceramic particles
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.ORCID iD: 0000-0001-9529-650X
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.ORCID iD: 0000-0002-7356-3002
2019 (English)In: Ceramics International, ISSN 0272-8842, E-ISSN 1873-3956, Vol. 45, no 8, p. 10385-10393Article in journal (Refereed) Published
Abstract [en]

How to precipitate ceramic nano- and microspheres in water based solutions only using inorganic ions is a challenge. In this study, spherical particles of alkaline earth phosphates and fluorides were synthesized using a precipitation reaction. Substituting ions, through inhibition of crystal growth, was used to induce sphere formation and to alter the morphology, size and composition of the spheres. The difference in ionic radius between the substituting ion (Mg, Ca and Sr) and the main cation (Sr and Ba) influenced the critical concentration to allow for sphere formation as well as the crystallinity. The larger difference, the lower was the concentration needed to form spheres. Low concentrations of Mg was enough to generate amorphous spheres of Sr- and Ba- phosphates whereas higher concentrations were needed if the radius difference were smaller. An increasing degree of substitution leads to a decrease in crystallinity of precipitated particles. The degree of substitution was determined to 16-55% where a low degree of ion substitution in the phosphates resulted in the formation of spheres (500-800 nm) with rough surfaces composed of apatite like phases. A higher degree of substitution resulted in amorphous spheres (500 nm- (1) mu m) with smooth surfaces.

Place, publisher, year, edition, pages
ELSEVIER SCI LTD , 2019. Vol. 45, no 8, p. 10385-10393
Keywords [en]
Powders, Chemical preparation, Chemical properties
National Category
Ceramics
Identifiers
URN: urn:nbn:se:uu:diva-383145DOI: 10.1016/j.ceramint.2019.02.097ISI: 000465058500089OAI: oai:DiVA.org:uu-383145DiVA, id: diva2:1315079
Funder
Swedish Research Council, 2013-5419Available from: 2019-05-10 Created: 2019-05-10 Last updated: 2019-05-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Engqvist, HåkanXia, Wei

Search in DiVA

By author/editor
Berg, CamillaEngqvist, HåkanXia, Wei
By organisation
Applied Materials Sciences
In the same journal
Ceramics International
Ceramics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf