uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tin-oxide nanoparticles deposited from a beam: what happens to the composition?
Lund Univ, MAX Lab, Box 118, S-22100 Lund, Sweden.
Lund Univ, Dept Phys, Synchrotron Radiat Res Div, Box 118, S-22100 Lund, Sweden.
Lund Univ, MAX Lab, Box 118, S-22100 Lund, Sweden.
Lund Univ, MAX Lab, Box 118, S-22100 Lund, Sweden.
Show others and affiliations
2019 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 21, no 11, p. 6287-6295Article in journal (Refereed) Published
Abstract [en]

The debate around the oxidation states occurring in laboratory-prepared tin-oxide samples has been for a long time an obstacle for an unambiguous assignment of characterization studies performed on such samples. In particular the changes in the Sn core-level energies caused by oxidation - i.e. the chemical shifts - as measured by photoelectron spectroscopy (PES) have been under discussion. The assignment problem is especially pronounced for nanoscale structures, which are important for photovoltaics, electronics, catalysis, and gas sensing. The reasons for the difficulties lie both in the natural properties of tin oxides, which can have substantial deficiencies of oxygen and tin in the lattice, and in the shortcomings of the fabrication and PES-characterization procedures themselves. Our recent PES study on tin-oxide nanoparticles fabricated by vapour-aggregation gave a chemical shift two times larger than earlier reported for Sn(iv) oxide for the Sn 4d level. The implemented fabrication technique forms an in-vacuum beam of particles whose composition can be both controlled and characterized by PES. In the present work SnO and SnO2 nanoparticles fabricated this way were deposited from the beam and probed by PES directly, as well as after exposure to air. The deposited nanoparticle films were also imaged by TEM (Transmission Electron Microscopy). The effects of the deposition process and exposure to air on the chemical composition were studied. The PES study of deposited SnO2 nanoparticles in the Sn 4d and Sn 3d core-level regions revealed the same core level shift as for unsupported nanoparticles, indicating that the chemical composition is preserved in the deposition process. The TEM study demonstrated a crystalline structure of separate SnO2 particles with lattice constants close to the macroscopic Sn(iv)-oxide. The PES study on the particles exposed to air showed changes in the composition. For the film of initially SnO particles a higher intermediate oxide was created. For the SnO2 nanoparticle film a lower, but strong, intermediate oxide was observed, likely at the surface.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2019. Vol. 21, no 11, p. 6287-6295
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-382460DOI: 10.1039/c8cp06168hISI: 000462659300042PubMedID: 30834904OAI: oai:DiVA.org:uu-382460DiVA, id: diva2:1315091
Funder
Swedish Research CouncilKnut and Alice Wallenberg FoundationSwedish Foundation for Strategic Research Available from: 2019-05-10 Created: 2019-05-10 Last updated: 2019-05-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Björneholm, Olle

Search in DiVA

By author/editor
Björneholm, Olle
By organisation
Department of Physics and AstronomyMolecular and Condensed Matter Physics
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf