uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Models of Saturn's Equatorial Ionosphere Based on In Situ Data From Cassini's Grand Finale
Boston Univ, Ctr Space Phys, Boston, MA 02215 USA.
Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
Imperial Coll London, Blackett Lab, London, England.
Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
Show others and affiliations
2018 (English)In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 18, p. 9398-9407Article in journal (Refereed) Published
Abstract [en]

We present new models of Saturn's equatorial ionosphere based on the first in situ measurements of its upper atmosphere. The neutral spectrum measured by Cassini's Ion and Neutral Mass Spectrometer, which includes substantial methane, ammonia, and organics in addition to the anticipated molecular hydrogen, helium, and water, serves as input for unexpectedly complex ionospheric chemistry. Heavy molecular ions are found to dominate Saturn's equatorial low-altitude ionosphere, with a mean ion mass of 11Da. Key molecular ions include H3O+ and HCO+; other abundant heavy ions depend upon the makeup of the mass 28 neutral species, which cannot be uniquely determined. Ion and Neutral Mass Spectrometer neutral species lead to generally good agreement between modeled and observed plasma densities, though poor reproduction of measured H+ and H-3(+) variability and an overabundance of modeled H-3(+) potentially hint at missing physical processes in the model, including a loss process that affects H-3(+) but not H+. Plain Language Summary Cassini's Grand Finale enabled the first-ever direct measurements of Saturn's upper atmosphere. Here we use Cassini's unique measurements to construct new models of the plasma in this important boundary region that separates the dense lower atmosphere from space. Based on the complex array of observed gases, we find that heavy molecular ions are dominant near Saturn's equator. This surprising result demonstrates that the chemistry in Saturn's equatorial upper atmosphere is substantially more complex than anticipated. The presence of these unexpected ions potentially represents a new method of monitoring Saturn's ionosphere remotely. Furthermore, as other Cassini measurements indicate that the complex chemistry is likely driven by an influx of ring-derived material, such observations may even help to track the evolution of Saturn's rings as they lose mass to its atmosphere.

Place, publisher, year, edition, pages
AMER GEOPHYSICAL UNION , 2018. Vol. 45, no 18, p. 9398-9407
Keywords [en]
Saturn, Cassini, ionosphere
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:uu:diva-387262DOI: 10.1029/2018GL078162ISI: 000447761300008OAI: oai:DiVA.org:uu-387262DiVA, id: diva2:1328305
Available from: 2019-06-20 Created: 2019-06-20 Last updated: 2019-06-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Morooka, Michiko

Search in DiVA

By author/editor
Morooka, Michiko
By organisation
Swedish Institute of Space Physics, Uppsala Division
In the same journal
Geophysical Research Letters
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf