uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Molecular Basis of the Chemiluminescence Mechanism of Luminol
Univ Valencia, Inst Ciencia Mol, POB 22085, Valencia, Spain.
KTH Royal Inst Technol, Dept Theoret Chem & Biol, Sch Engn Sci Chem Biotechnol & Hlth CBH, S-10691 Stockholm, Sweden.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Theoretical Chemistry.ORCID iD: 0000-0002-1312-1202
Show others and affiliations
2019 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 25, no 20, p. 5202-5213Article in journal (Refereed) Published
Abstract [en]

Light emission from luminol is probably one of the most popular chemiluminescence reactions due to its use in forensic science, and has recently displayed promising applications for the treatment of cancer in deep tissues. The mechanism is, however, very complex and distinct possibilities have been proposed. By efficiently combining DFT and CASPT2 methodologies, the chemiluminescence mechanism has been studied in three steps: 1)luminol oxygenation to generate the chemiluminophore, 2)a chemiexcitation step, and 3)generation of the light emitter. The findings demonstrate that the luminol double-deprotonated dianion activates molecular oxygen, diazaquinone is not formed, and the chemiluminophore is formed through the concerted addition of oxygen and concerted elimination of nitrogen. The peroxide bond, in comparison to other isoelectronic chemical functionalities (-NH-NH-, -N--N--, and -S-S-), is found to have the best chemiexcitation efficiency, which allows the oxygenation requirement to be rationalized and establishes general design principles for the chemiluminescence efficiency. Electron transfer from the aniline ring to the OO bond promotes the excitation process to create an excited state that is not the chemiluminescent species. To produce the light emitter, proton transfer between the amino and carbonyl groups must occur; this requires highly localized vibrational energy during chemiexcitation.

Place, publisher, year, edition, pages
WILEY-V C H VERLAG GMBH , 2019. Vol. 25, no 20, p. 5202-5213
Keywords [en]
CASPT2, cancer, density functional calculations, electron transfer, chemiluminescence, reaction mechanisms
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-387214DOI: 10.1002/chem.201805918ISI: 000468855200014PubMedID: 30720222OAI: oai:DiVA.org:uu-387214DiVA, id: diva2:1330154
Funder
Swedish Research Council, 2016-033989Available from: 2019-06-25 Created: 2019-06-25 Last updated: 2019-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Lundberg, MarcusLindh, Roland

Search in DiVA

By author/editor
Lundberg, MarcusLindh, RolandRoca-Sanjuan, Daniel
By organisation
Department of Chemistry - ÅngströmTheoretical Chemistry
In the same journal
Chemistry - A European Journal
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf