uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Toward an alternative approach for the preparation of low-temperature titanium dioxide blocking underlayers for perovskite solar cells
Swiss Fed Inst Technol Lausanne EPFL, EPFL SB ISIC LSPM, Inst Chem Sci & Engn, Lab Photomol Sci, Chemin Alambics,Stn 6, CH-1015 Lausanne, Switzerland;Shwebo Univ, Phys Dept, Shwebo 02261, Myanmar;Univ Mandalay, Dept Phys, Mat Res Lab, Mandalay 05032, Myanmar.
Swiss Fed Inst Technol Lausanne EPFL, EPFL SB ISIC LPI, Lab Photon & Interfaces, Inst Chem Sci & Engn, Chemin Alambics,Stn 6, CH-1015 Lausanne, Switzerland;Peking Univ, Dept Phys, State Key Lab Artificial Microstruct & Mesoscop P, Beijing 100871, Peoples R China.
Swiss Fed Inst Technol Lausanne EPFL, EPFL SB ISIC LSPM, Inst Chem Sci & Engn, Lab Photomol Sci, Chemin Alambics,Stn 6, CH-1015 Lausanne, Switzerland.
Univ Mandalay, Dept Phys, Mat Res Lab, Mandalay 05032, Myanmar.
Show others and affiliations
2019 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 7, no 17, p. 10729-10738Article in journal (Refereed) Published
Abstract [en]

The anodic electrodeposition method is investigated as an alternative technique for the preparation of a titanium oxide (TiO2) blocking underlayer (UL) for perovskite solar cells (PSCs). Extremely thin Ti-IV-based films are grown from aqueous acidic titanium(III) chloride in an electrochemical cell at room temperature. This precursor layer is converted to the UL (ED-UL), in a suitable state for PSC applications, by undertaking a sintering step at 450 degrees C for half an hour. PSCs with the composition of the light-absorbing material FA(0.85)MA(0.10)Cs(0.05)Pb(I0.87Br0.13)(3) (FA and MA denote the formamidinium and methylammonium cations, respectively) based on the ED-UL are compared with PSCs with the UL of a standard type prepared by the spray-pyrolysis method at 450 degrees C from titanium diisopropoxide bis(acetylacetonate) (SP-UL). We obtain power conversion efficiencies (PCEs) of over 20% for mesoscopic perovskite devices employing both ED-ULs and SP-ULs. Slightly higher fill factor values are observed for ED-UL-based devices. In addition, ED-ULs prepared by the same method have also been applied in planar PSCs, resulting in a PCE exceeding 17%, which is comparable to that for similar PSCs with an SP-UL. The preparation of ED-ULs with a lower sintering temperature, 150 degrees C, has also been examined. The efficiency of a planar PSC incorporating this underlayer was 14%. These results point out to the possibility of applying ED-ULs in flexible planar PSCs in the future.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY , 2019. Vol. 7, no 17, p. 10729-10738
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-390040DOI: 10.1039/c8ta04246bISI: 000472183200061OAI: oai:DiVA.org:uu-390040DiVA, id: diva2:1340385
Available from: 2019-08-05 Created: 2019-08-05 Last updated: 2019-08-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Svanström, Sebastian

Search in DiVA

By author/editor
Svanström, Sebastian
By organisation
Molecular and Condensed Matter Physics
In the same journal
Journal of Materials Chemistry A
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 45 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf