uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Power Hardware in-the-Loop Real Time Modelling using Hydrodynamic Model of a Wave Energy Converter with Linear generator Power Take-Off
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Show others and affiliations
2019 (English)In: the 29th International Ocean and Polar Engineering Conference (ISOPE), Honolulu, Hawaii, USA, June 16-21, 2019, 2019Conference paper, Oral presentation with published abstract (Refereed)
Place, publisher, year, edition, pages
2019.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:uu:diva-390101OAI: oai:DiVA.org:uu-390101DiVA, id: diva2:1340420
Conference
29th International Ocean and Polar Engineering Conference (ISOPE)
Available from: 2019-08-05 Created: 2019-08-05 Last updated: 2019-08-19
In thesis
1. Grid Integration and Impact of a Wave Power System
Open this publication in new window or tab >>Grid Integration and Impact of a Wave Power System
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Increasing energy consumption and concern for carbon emissions has boosted the demand for renewable energy production. The focus on renewable energy has gained much attention in wind, solar, hydro and wave power generations. Wave power has great potential due to its high energy density but there are challenges as well. This thesis addresses some of the challenges involved in the grid integration of wave energy and in maintaining power quality. In this thesis a grid connection of permanent magnet linear generator (PMLG) based wave energy converter (WEC) as a renewable energy source is evaluated at the Division of Electricity, Uppsala University.

The grid impact of a wave energy park in terms of flicker, voltage variations and harmonic distortion at the grid-connection point are investigated extensively. The short-term flicker level generated by the WEC and a wave energy park (WEP) related to the rated WEP power and grid impedance angle at the PCC are evaluated.

In this thesis, an improved control for hybrid energy storage is presented, which enhanced the efficiency and increased the battery life while smoothing the intermittent power from the WEP. The thesis, also, contributes to resolve the problem of inertia and power balance by integrating the DC-link capacitor in the control loop which reduce the size and cost of the components at the DC-link.

The work presented in the thesis has contributed for the force control of the PMLG which is predicted and controlled by regulating the stator currents of the generator. A nonlinear, neural, control is evaluated and compared to a linear, proportional-integral, control. The results from the nonlinear control show the good agreement between the referenced and the generated currents. The reduced losses enhanced the accuracy of the system.

A control and grid connection system for a WEC has been designed and installed. The thesis addresses the issue of power quality in low, steady and varying power flows of compliance with the grid code requirements.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2019. p. 116
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1842
Keywords
ANN, buck-boost converter, current control, energy storage system, force control, flicker, FPGA control, grid integartion, harmonics, linear generator, PHIL, microgrid, voltage variation, wave energy, WEC
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-390133 (URN)978-91-513-0725-1 (ISBN)
Public defence
2019-10-04, 80127, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2015-03126
Note

We havn't got the response from the opponent yet, It will be confirmed in a few days.

Available from: 2019-09-13 Created: 2019-08-19 Last updated: 2019-10-15

Open Access in DiVA

No full text in DiVA

Authority records BETA

Potapenko, TatianaParwal, ArvindHjalmarsson, JohannesBoström, CeciliaTemiz, Irina

Search in DiVA

By author/editor
Potapenko, TatianaParwal, ArvindHjalmarsson, JohannesBoström, CeciliaTemiz, Irina
By organisation
Electricity
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 21 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf