uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mechanisms and clinical relevance of bacterial heteroresistance
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.ORCID iD: 0000-0001-6640-2174
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
2019 (English)In: Nature Reviews Microbiology, ISSN 1740-1526, E-ISSN 1740-1534, Vol. 17, no 8, p. 479-496Article, review/survey (Refereed) Published
Abstract [en]

Antibiotic heteroresistance is a phenotype in which a bacterial isolate contains subpopulations of cells that show a substantial reduction in antibiotic susceptibility compared with the main population. Recent work indicates that heteroresistance is very common for several different bacterial species and antibiotic classes. The resistance phenotype is often unstable, and in the absence of antibiotic pressure it rapidly reverts to susceptibility. A common mechanistic explanation for the instability is the occurrence of genetically unstable tandem amplifications of genes that cause resistance. Due to their instability, low frequency and transient character, it is challenging to detect and study these subpopulations, which often leads to difficulties in unambiguously classifying bacteria as susceptible or resistant. Finally, in vitro experiments, mathematical modelling, animal infection models and clinical studies show that the resistant subpopulations can be enriched during antibiotic exposure, and increasing evidence suggests that heteroresistance can lead to treatment failure.

Place, publisher, year, edition, pages
Nature Publishing Group, 2019. Vol. 17, no 8, p. 479-496
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:uu:diva-390413DOI: 10.1038/s41579-019-0218-1ISI: 000475479100007PubMedID: 31235888OAI: oai:DiVA.org:uu-390413DiVA, id: diva2:1342099
Funder
Swedish Research CouncilAvailable from: 2019-08-12 Created: 2019-08-12 Last updated: 2019-08-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Andersson, Dan INicoloff, HervéHjort, Karin

Search in DiVA

By author/editor
Andersson, Dan INicoloff, HervéHjort, Karin
By organisation
Department of Medical Biochemistry and Microbiology
In the same journal
Nature Reviews Microbiology
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 97 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf