uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Aero-gel based CeO2 nanoparticles: synthesis, structural properties and detailed humidity sensing response
DCR Univ Sci & Technol, Dept Chem, Phys Chem Res Lab, Murthal 131039, Haryana, India.
Ctr Fire Explos & Environm Safety, Environm Safety Grp, Delhi 110054, India;Univ Delhi, Dept Chem, Delhi 110007, India.
CRA Coll Sonipat, Dept Chem, Sonipat 131001, Haryana, India.
GSSS Tajpur, Dept Sch Educ, Sonipat 131027, Haryana, India.
Show others and affiliations
2019 (English)In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 7, no 18, p. 5477-5487Article in journal (Refereed) Published
Abstract [en]

In this work, we present aero-gel based cerium oxide (CeO2) nanoparticles for the relative humidity (%RH) sensing application. X-ray diffraction (XRD) and N-2 adsorption-desorption isotherms revealed that the synthesized CeO2 nanoparticles (NPs) possessed a face centered cubic (fcc) structure with a high surface area (268 m(2) g(-1)). The high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and selected area electron diffraction (SAED) studies confirmed that the shape of CeO2 NPs was spherical and they possessed a polycrystalline nature. X-ray photoelectron spectroscopy (XPS) studies revealed the presence of both trivalent (Ce3+) and tetravalent (Ce4+) oxidation states of ceria. The CeO2 NPs' response towards %RH was explored by measuring the important sensing attributes (response/recovery, linearity, hysteresis, repeatability and stability) at 11-98%RH and at room temperature. An impressive impedance change of 4.5 orders of magnitude was observed along with a swift response (4.6 s) time and rapid recovery (2.7 s) time. Moreover, the prepared sensor showed negligible hysteresis, excellent stability and good reversible response in the complete 11-98%RH range.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY , 2019. Vol. 7, no 18, p. 5477-5487
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-390523DOI: 10.1039/c9tc01081eISI: 000472443000030OAI: oai:DiVA.org:uu-390523DiVA, id: diva2:1342704
Funder
Swedish Research CouncilAvailable from: 2019-08-14 Created: 2019-08-14 Last updated: 2019-08-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Ahuja, Rajeev

Search in DiVA

By author/editor
Ahuja, Rajeev
By organisation
Materials Theory
In the same journal
Journal of Materials Chemistry C
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf