uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Understanding the size effects on the electronic structure of ThO2 nanoparticles
European Synchrotron, Rossendorf Beamline ESRF, CS40220, F-38043 Grenoble 9, France;Inst Resource Ecol, HZDR, POB 510119, D-01314 Dresden, Germany.
Lomonosov Moscow State Univ, Dept Chem, Leninskie Gory 1-3, Moscow 119991, Russia.
Lomonosov Moscow State Univ, Dept Chem, Leninskie Gory 1-3, Moscow 119991, Russia.ORCID iD: 0000-0002-7805-8670
European Synchrotron, Rossendorf Beamline ESRF, CS40220, F-38043 Grenoble 9, France;Inst Resource Ecol, HZDR, POB 510119, D-01314 Dresden, Germany;Lomonosov Moscow State Univ, Dept Chem, Leninskie Gory 1-3, Moscow 119991, Russia.ORCID iD: 0000-0002-4198-5091
Show others and affiliations
2019 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 21, no 20, p. 10635-10643Article in journal (Refereed) Published
Abstract [en]

Developing characterization techniques and analysis methods adapted to the investigation of nanoparticles (NPs) is of fundamental importance considering the role of these materials in many fields of research. The study of actinide based NPs, despite their environmental relevance, is still underdeveloped compared to that of NPs based on stable and lighter elements. We present here an investigation of ThO2 NPs performed with High-Energy Resolution Fluorescence Detected (HERFD) X-ray Absorption Near-Edge Structure (XANES) and with ab initio XANES simulations. The first post-edge feature of Th L-3 edge HERFD XANES disappears in small NPs and simulations considering non-relaxed structural models reproduce the trends observed in experimental data. Inspection of the simulations of Th atoms in the core and on the surface of the NP indeed demonstrates that the first post-edge feature is very sensitive to the lowering of the number of coordinating atoms and therefore to the more exposed Th atoms at the surface of the NP. The sensitivity of the L-3 edge HERFD XANES to low coordinated atoms at the surface stems from the hybridization of the d-Density of States (DOS) of Th with both O and Th neighboring atoms. This may be a common feature to other oxide systems that can be exploited to investigate surface interactions.

Place, publisher, year, edition, pages
2019. Vol. 21, no 20, p. 10635-10643
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-392061DOI: 10.1039/c9cp01283dISI: 000476561000039PubMedID: 31080986OAI: oai:DiVA.org:uu-392061DiVA, id: diva2:1349821
Funder
EU, European Research Council, 759696Swedish Research Council, 2017-06465Available from: 2019-09-10 Created: 2019-09-10 Last updated: 2019-09-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Butorin, Sergei M.

Search in DiVA

By author/editor
Romanchuk, Anna Yu.Gerber, EvgenyButorin, Sergei M.
By organisation
Molecular and Condensed Matter Physics
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf