uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hyperglucagonemia in youth is associated with high plasma free fatty acids, visceral adiposity, and impaired glucose tolerance.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
Show others and affiliations
2019 (English)In: Pediatric Diabetes, ISSN 1399-543X, E-ISSN 1399-5448, Vol. 20, no 7, p. 880-891Article in journal (Refereed) Published
Abstract [en]

OBJECTIVE: To delineate potential mechanisms for fasting hyperglucagonemia in childhood obesity by studying the associations between fasting plasma glucagon concentrations and plasma lipid parameters and fat compartments.

METHODS: Cross-sectional study of children and adolescents with obesity (n = 147) and lean controls (n = 43). Differences in free fatty acids (FFAs), triglycerides, insulin, and fat compartments (quantified by magnetic resonance imaging) across quartiles of fasting plasma glucagon concentration were analyzed. Differences in oral glucose tolerance test (OGTT) glucagon response was tested in high vs low FFAs, triglycerides, and insulin. Human islets of Langerhans were cultured at 5.5 mmol/L glucose and in the absence or presence of a FFA mixture with total FFA concentration of 0.5 mmol/L and glucagon secretion quantified.

RESULTS: In children with obesity, the quartile with the highest fasting glucagon had higher insulin (201 ± 174 vs 83 ± 39 pmol/L, P < .01), FFAs (383 ± 52 vs 338 ± 109 μmol/L, P = .02), triglycerides (1.5 ± 0.9 vs 1.0 ± 0.7 mmol/L, P < .01), visceral adipose tissue volume (1.9 ± 0.8 vs 1.2 ± 0.3 dm3 , P < .001), and a higher prevalence of impaired glucose tolerance (IGT; 41% vs 8%, P = .01) than the lowest quartile. During OGTT, children with obesity and high insulin had a worse suppression of glucagon during the first 10 minutes after glucose intake. Glucagon secretion was 2.6-fold higher in islets treated with FFAs than in those not treated with FFAs.

CONCLUSIONS: Hyperglucagonemia in childhood obesity is associated with hyperinsulinemia, high plasma FFAs, high plasma triglycerides, visceral adiposity, and IGT. The glucagonotropic effect of FFAs on isolated human islets provides a potential mechanism linking high fasting plasma FFAs and glucagon levels.

Place, publisher, year, edition, pages
2019. Vol. 20, no 7, p. 880-891
Keywords [en]
free fatty acids, glucagon, glucose intolerance, pediatric obesity, type 2 diabetes
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-392827DOI: 10.1111/pedi.12890PubMedID: 31271247OAI: oai:DiVA.org:uu-392827DiVA, id: diva2:1349957
Available from: 2019-09-10 Created: 2019-09-10 Last updated: 2019-11-21

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Kullberg, JoelAhlström, Håkan
By organisation
Radiology
In the same journal
Pediatric Diabetes
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf