uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
SimInf for spatio-temporal data-driven modeling of African swine fever in Swedish wildboar
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.ORCID iD: 0000-0002-3614-1732
2019 (English)In: GeoVet 2019: Novel spatio-temporal approaches in the era of Big Data, 2019Conference paper, Oral presentation with published abstract (Refereed)
Place, publisher, year, edition, pages
2019.
National Category
Computer Sciences Veterinary Science
Identifiers
URN: urn:nbn:se:uu:diva-393474DOI: 10.3389/conf.fvets.2019.05.00002OAI: oai:DiVA.org:uu-393474DiVA, id: diva2:1353573
Conference
GeoVet 2019, October 8–10, Davis, CA
Available from: 2019-08-27 Created: 2019-09-23 Last updated: 2019-09-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Engblom, Stefan

Search in DiVA

By author/editor
Engblom, Stefan
By organisation
Division of Scientific ComputingComputational Science
Computer SciencesVeterinary Science

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf