uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Origin of the heat-induced improvement of catalytic activity and stability of MnOx electrocatalysts for water oxidation
Univ Sofia St Kliment Ohridski, Fac Phys, Sofia 1164, Bulgaria.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics. Free Univ Berlin, Fachbereich Phys, Arnimallee 14, D-14195 Berlin, Germany.ORCID iD: 0000-0002-2836-838X
Free Univ Berlin, Fachbereich Phys, Arnimallee 14, D-14195 Berlin, Germany.
Free Univ Berlin, Fachbereich Phys, Arnimallee 14, D-14195 Berlin, Germany;Univ Sistan & Baluchestan, Dept Phys, Zahedan 9816745845, Iran.
Show others and affiliations
2019 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 7, no 28, p. 17022-17036Article in journal (Refereed) Published
Abstract [en]

Catalysis of the oxygen evolution reaction (OER) by earth-abundant materials in the near-neutral pH regime is of great interest as it is the key reaction for non-fossil fuel production. To address the pertinent stability problems and insufficiently understood structure-activity relations, we investigate the influence of moderate annealing (100-300 degrees C for 20 min) for two types of electrodeposited Mn oxide films with contrasting properties. Upon annealing, the originally inactive and structurally well-ordered Oxide 1 of birnessite type became as OER active as the non-heated Oxide 2, which has a highly disordered atomic structure. Oxide 2 also improved its activity upon heating, but more important is the stability improvement: the operation time increased by about two orders of magnitude (in 0.1 M KPi at pH 7). Aiming at atomistic understanding, electrochemical methods including quantitative analysis of impedance spectra, X-ray spectroscopy (XANES and EXAFS), and adapted optical spectroscopies (infrared, UV-vis and Raman) identified structure-reactivity relations. Oxide structures featuring both di-mu-oxo bridged Mn ions and (close to) linear mono-mu-oxo Mn3+-O-Mn4+ connectivity seem to be a prerequisite for OER activity. The latter motif likely stabilizes Mn3+ ions at higher potentials and promotes electron/hole hopping, a feature related to electrical conductivity and reflected in the strongly accelerated rates of Mn oxidation and O-2 formation. Poor charge mobility, which may result from a low level of Mn3+ ions at high potentials, likely promotes inactivation after prolonged operation. Oxide structures related to the perovskite-like zeta-Mn2O3 were formed after the heating of Oxide 2 and could favour stabilization of Mn ions in oxidation states lower than +4. This rare phase was previously found only at high pressure (20 GPa) and temperature (1200 degrees C) and this is the first report where it was stable under ambient conditions.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY , 2019. Vol. 7, no 28, p. 17022-17036
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-391360DOI: 10.1039/c9ta05108bISI: 000476599900043OAI: oai:DiVA.org:uu-391360DiVA, id: diva2:1354012
Funder
German Research Foundation (DFG), SPP1613German Research Foundation (DFG), DA402/7-1German Research Foundation (DFG), SFB 1078Available from: 2019-09-24 Created: 2019-09-24 Last updated: 2019-09-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Chernev, Petko

Search in DiVA

By author/editor
Chernev, PetkoZaharieva, Ivelina
By organisation
Molecular Biomimetics
In the same journal
Journal of Materials Chemistry A
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 57 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf