uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Stable Cycling of Sodium Metal All-Solid-State Batteries with Polycarbonate-Based Polymer Electrolytes
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.ORCID iD: 0000-0002-3374-2276
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.ORCID iD: 0000-0002-8019-2801
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.ORCID iD: 0000-0002-9862-7375
2019 (English)In: ACS APPLIED POLYMER MATERIALS, ISSN 2637-6105, Vol. 1, no 4, p. 825-832Article in journal (Refereed) Published
Abstract [en]

Solid polymer electrolytes based on high-molecular-weight poly(trimethylene carbonate) (PTMC) in combination with NaFSI salt were investigated for application in sodium batteries. The polycarbonate host material proved to be able to dissolve large amounts of salt, at least up to a carbonate:Na+ ratio of 1:1. Combined DSC, conductivity, and FTIR data indicated the formation of a percolating network of salt clusters along with the transition to a percolation-type ion transport mechanism at the highest salt concentrations. While the highest total ionic conductivities were seen at the highest salt concentrations (up to a remarkable 5 x 10(-5) S cm(-1) at 25 degrees C at a 1:1 carbonate:Na+ ratio), the most stable battery performance was seen at a more moderate salt loading of 5:1 carbonate:Na+, reaching >80 cycles at a stable capacity of similar to 90 mAh g(-1) at 60 degrees C in a sodium metal/Prussian blue cell. The results highlight the importance of the choice of salt and salt concentration on electrolyte performance as well as demonstrate the potential of utilizing polycarbonate-based electrolytes in sodium-based energy storage systems.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2019. Vol. 1, no 4, p. 825-832
Keywords [en]
polymer electrolytes, polycarbonates, sodium, batteries, ionic conductivity
National Category
Polymer Chemistry Materials Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-392889DOI: 10.1021/acsapm.9b00068ISI: 000476966800025OAI: oai:DiVA.org:uu-392889DiVA, id: diva2:1354042
Funder
EU, European Research Council, 771777 FUN POLYSTOREAvailable from: 2019-09-24 Created: 2019-09-24 Last updated: 2019-09-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Sångeland, ChristoferMogensen, RonnieBrandell, DanielMindemark, Jonas

Search in DiVA

By author/editor
Sångeland, ChristoferMogensen, RonnieBrandell, DanielMindemark, Jonas
By organisation
Structural Chemistry
Polymer ChemistryMaterials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf