uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Molten alkali halides - temperature dependence of structure, dynamics and thermodynamics
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational Biology and Bioinformatics.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational Biology and Bioinformatics.ORCID iD: 0000-0002-7659-8526
2019 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 21, no 34, p. 18516-18524Article in journal (Refereed) Published
Abstract [en]

The renewed interest in molten salts in the energy industry fuels the need of a thorough understanding of their physicochemical properties. Alkali halide melts are perhaps the simplest ionic liquids, but they are used as electrolytes in batteries or for thermal energy storage. Although their structure is considered to be well documented and understood, a systematic evaluation of experimental structural data reveals significant discrepancies, while there is only limited experimental information on dynamic properties. Here, we investigate structure, dynamics and thermodynamic properties of pure alkali halide melts using state-of-the-art simulation models at different temperatures. The simulations provide a consistent picture of the structure of alkali halide melts with coordination numbers that lie in between experimental numbers. The simulations reveal a strengthening of the cation-anion bonds with increasing temperature that, somewhat counter-intuitively, coincides with faster dynamics in the melts. The thermodynamic analysis unveils that structure breaking proceeds on the picosecond timescale through an associative substitution mechanism as signified by a negative entropy of activation. The results on ion pair lifetimes contribute to an improved understanding of the microscopic origin of dynamical properties, such as e.g. conductivity of salt melts. The structural analysis provided here contributes to a more coherent picture of the coordination numbers in alkali halides than what is currently available from experimental data.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY , 2019. Vol. 21, no 34, p. 18516-18524
National Category
Physical Chemistry Inorganic Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-394193DOI: 10.1039/c9cp03603bISI: 000483701200004PubMedID: 31414083OAI: oai:DiVA.org:uu-394193DiVA, id: diva2:1359214
Funder
Swedish National Infrastructure for Computing (SNIC), SNIC2017-12-41Swedish National Infrastructure for Computing (SNIC), SNIC2018-2-42eSSENCE - An eScience CollaborationAvailable from: 2019-10-08 Created: 2019-10-08 Last updated: 2019-10-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Walz, Marie-MadeleineVan der Spoel, David

Search in DiVA

By author/editor
Walz, Marie-MadeleineVan der Spoel, David
By organisation
Computational Biology and Bioinformatics
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Physical ChemistryInorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf