uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Odd-frequency superconductivity induced by nonmagnetic impurities
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
2019 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 100, no 14, article id 144511Article in journal (Refereed) Published
Abstract [en]

A growing body of literature suggests that odd-frequency superconducting pair amplitudes can be generated in normal-metal-superconductor junctions. The emergence of odd-frequency pairing in these systems is often attributed to the breaking of translation invariance. In this work, we study the pair symmetry of a one-dimensional s-wave superconductor in the presence of a single nonmagnetic impurity and demonstrate that translation-symmetry breaking is not sufficient for inducing odd-frequency pairing. We consider three kinds of impurities: a local perturbation of the chemical potential, an impurity possessing a quantum energy level, and a local perturbation of the superconducting gap. Surprisingly, we find local perturbations of the chemical potential do not induce any odd-frequency pairing, despite the fact that they break translation invariance. Moreover, although odd frequency can be induced by both the quantum impurity and the perturbation of the gap, we find these odd-frequency amplitudes emerge from entirely different kinds of scattering processes. The quantum impurity generates odd-frequency pairs by allowing one of the quasiparticles belonging to an equal-time Cooper pair to tunnel onto the impurity state and then back to the superconductor, giving rise to odd-frequency amplitudes with a temporal broadening inversely proportional to the energy level of the impurity. In contrast to this, the perturbation of the gap leads to odd-frequency pairing by "gluing together" normal-state quasiparticles from different points in space and time, leading to odd-frequency amplitudes which are very localized in the time domain.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC , 2019. Vol. 100, no 14, article id 144511
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-396706DOI: 10.1103/PhysRevB.100.144511ISI: 000491167700005OAI: oai:DiVA.org:uu-396706DiVA, id: diva2:1368859
Funder
Swedish Research Council, 621-2014-3721Swedish Research Council, 2018-03488Knut and Alice Wallenberg FoundationEU, European Research Council, ERC-2017-StG-757553Available from: 2019-11-08 Created: 2019-11-08 Last updated: 2019-11-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Triola, ChristopherBlack-Schaffer, Annica M.

Search in DiVA

By author/editor
Triola, ChristopherBlack-Schaffer, Annica M.
By organisation
Materials Theory
In the same journal
Physical Review B
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf