uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Texture-based oral cancer detection: A performance analysis of deep learning approaches.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction. (MIDA)
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.ORCID iD: 0000-0002-0544-8272
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction.ORCID iD: 0000-0001-7312-8222
Show others and affiliations
2019 (Swedish)In: 3rd NEUBIAS Conference, Luxembourg, 2019Conference paper, Poster (with or without abstract) (Other academic)
Abstract [en]

Early stage cancer detection is essential for reducing cancer mortality. Screening programs such as that for cervical cancer are highly effective in preventing advanced stage cancers. One obstacle to the introduction of screening for other cancer types is the cost associated with manual inspection of the resulting cell samples. Computer assisted image analysis of cytology slides may offer a significant reduction of these costs. We are particularly interested in detection of cancer of the oral cavity, being one of the most common malignancies in the world, with an increasing tendency of incidence among young people. Due to the non-invasive accessibility of the oral cavity, automated detection may enable screening programs leading to early diagnosis and treatment.It is well known that variations in the chromatin texture of the cell nucleus are an important diagnostic feature. With an aim to maximize reliability of an automated cancer detection system for oral cancer detection, we evaluate three state of the art deep convolutional neural network (DCNN) approaches which are specialized for texture analysis. A powerful tool for texture description are local binary patterns (LBPs); they describe the pattern of variations in intensity between a pixel and its neighbours, instead of using the image intensity values directly. A neural network can be trained to recognize the range of patterns found in different types of images. Many methods have been proposed which either use LBPs directly, or are inspired by them, and show promising results on a range of different image classification tasks where texture is an important discriminative feature.We evaluate multiple recently published deep learning-based texture classification approaches: two of them (referred to as Model 1, by Juefei-Xu et al. (CVPR 2017); Model 2, by Li et al. (2018)) are inspired by LBP texture descriptors, while the third (Model 3, by Marcos et al. (ICCV 2017)), based on Rotation Equivariant Vector Field Networks, aims at preserving fine textural details under rotations, thus enabling a reduced model size. Performances are compared with state-of-the-art results on the same dataset, by Wieslander et al. (CVPR 2017), which are based on ResNet and VGG architectures. Furthermore a fusion of DCNN with LBP maps as in Wetzer et al. (Bioimg. Comp. 2018) is evaluated for comparison. Our aim is to explore if focus on texture can improve CNN performance.Both of the methods based on LBPs exhibit higher performances (F1-score for Model 1: 0.85; Model 2: 0.83) than what is obtained by using CNNs directly on the greyscale data (VGG: 0.78, ResNet: 0.76). This clearly demonstrates the effectiveness of LBPs for this type of image classification task. The approach based on rotation equivariant networks stays behind in performance (F1-score for Model 3: 0.72), indicating that this method may be less appropriate for classifying single-cell images.

Place, publisher, year, edition, pages
Luxembourg, 2019.
National Category
Computer and Information Sciences
Research subject
Computerized Image Processing
Identifiers
URN: urn:nbn:se:uu:diva-398150OAI: oai:DiVA.org:uu-398150DiVA, id: diva2:1374750
Conference
3rd NEUBIAS Conference
Available from: 2019-12-02 Created: 2019-12-02 Last updated: 2019-12-04

Open Access in DiVA

No full text in DiVA

Authority records BETA

Wetzer, ElisabethLindblad, JoakimSladoje, Natasa

Search in DiVA

By author/editor
Wetzer, ElisabethLindblad, JoakimSladoje, Natasa
By organisation
Division of Visual Information and InteractionComputerized Image Analysis and Human-Computer Interaction
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf