uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modelling of JET DT experiments in ILW configurations
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Show others and affiliations
Number of Authors: 12262018 (English)In: Contributions to Plasma Physics, ISSN 0863-1042, E-ISSN 1521-3986, Vol. 58, no 6-8, p. 739-745Article in journal (Refereed) Published
Abstract [en]

Numerical scan at constant shows that core and scrape-off layer (SOL) radiations do not depend on the plasma current (I-p). Whereas the SOL radiation increases with seeding, the core radiation, however, does not continue to increase with seeding but rolls over at higher seeding rates in the simulations. The core plasma contamination by W ions is low, c(W) << 10(-4). When the seeding starts, an increase in radiation power leading to a reduction in P-loss = (P-aux - P-rad) is observed, influencing the plasma confinement. The power scan at constant I-p indicates that the core radiation, P-plate, P-SOL (and even SOL radiation), saturates with seeding. In addition, strong dilution with increasing seeding (Z(eff) >> 3) and large W concentrations with increasing power are found. Comparing neon with nitrogen seeding, it is seen that neon leads to slightly larger total radiation than nitrogen. However, that is achieved with much higher plasma contamination (Z(eff) approximate to 4-5) and dilution in the case of Ne, and simultaneously the power crossing the separatrix is lower for Ne than for N, indicating better H-mode performance in N-2-seeded discharges.

Place, publisher, year, edition, pages
WILEY-V C H VERLAG GMBH , 2018. Vol. 58, no 6-8, p. 739-745
Keywords [en]
core plasma, edge plasma, integrated modelling, JET seeding discharges
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:uu:diva-398277DOI: 10.1002/ctpp.201700118ISI: 000443937100045OAI: oai:DiVA.org:uu-398277DiVA, id: diva2:1375196
Conference
16th International Workshop on Plasma Edge Theory in Fusion Devices (PET), SEP 27-29, 2017, Aix Marseille Univ, Marseille, FRANCE
Note

For complete list of authors see http://dx.doi.org/10.1002/ctpp.201700118

Available from: 2019-12-04 Created: 2019-12-04 Last updated: 2019-12-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Andersson Sundén, ErikCecconello, MarcoConroy, SeanEricsson, GöranEriksson, JacobHjalmarsson, AndersPossnert, GöranSjöstrand, HenrikWeiszflog, Matthias

Search in DiVA

By author/editor
Andersson Sundén, ErikCecconello, MarcoConroy, SeanEricsson, GöranEriksson, JacobHjalmarsson, AndersPossnert, GöranSjöstrand, HenrikWeiszflog, Matthias
By organisation
Applied Nuclear Physics
In the same journal
Contributions to Plasma Physics
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf