uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Divertor currents optimization procedure for JET-ILW high flux expansion experiments
Department of Economics, Engineering, Society and Business Organization (DEIm), University of Tuscia, Largo dell’Università snc, Viterbo, Italy.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Show others and affiliations
Number of Authors: 12262018 (English)In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 129, p. 115-119Article in journal (Refereed) Published
Abstract [en]

This paper deals with a divertor coil currents optimized procedure to design High Flux Expansion (HFE) configurations in the JET tokamak aimed to study the effects of flux expansion variation on the radiation fraction and radiated power re-distribution. A number of benefits of HFE configuration have been experimentally demonstrated on TCV, EAST, NSTX and DIII-D tokamaks and are under investigation for next generation devices, as DEMO and DTT. The procedure proposed here exploits the linearized relation between the plasma-wall gaps and the Poloidal Field (PF) coil currents. Once the linearized model is provided by means of CREATE-NL code, the divertor coils currents are calculated using a constrained quadratic programming optimization procedure, in order to achieve HFE configuration. Flux expanded configurations have been experimentally realized both in ohmic and heated plasma with and without nitrogen seeding. Preliminary results on the effects of the flux expansion variation on total power radiation increase will be also briefly discussed.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE SA , 2018. Vol. 129, p. 115-119
Keywords [en]
Advanced configuration, Quadratic programming optimization, Flux expansion, Scrape-off layer
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:uu:diva-398329DOI: 10.1016/j.fusengdes.2018.02.041ISI: 000431094100018OAI: oai:DiVA.org:uu-398329DiVA, id: diva2:1377269
Note

For complete list of authors see http://dx.doi.org/10.1016/j.fusengdes.2018.02.041

Available from: 2019-12-11 Created: 2019-12-11 Last updated: 2019-12-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Andersson Sundén, ErikBinda, FedericoCecconello, MarcoConroy, SeanDzysiuk, NataliiaEricsson, GöranEriksson, JacobHellesen, CarlHjalmarsson, AndersPossnert, GöranSjöstrand, HenrikSkiba, MateuszWeiszflog, Matthias

Search in DiVA

By author/editor
Andersson Sundén, ErikBinda, FedericoCecconello, MarcoConroy, SeanDzysiuk, NataliiaEricsson, GöranEriksson, JacobHellesen, CarlHjalmarsson, AndersPossnert, GöranSjöstrand, HenrikSkiba, MateuszWeiszflog, Matthias
By organisation
Applied Nuclear Physics
In the same journal
Fusion engineering and design
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf