uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analysis of possible improvement of the plasma performance in JET due to the inward spatial channelling of fast-ion energy
Inst Nucl Res, Prospekt Nauky 47, Kiev, Ukraine.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Show others and affiliations
Number of Authors: 12272018 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 7, article id 076012Article in journal (Refereed) Published
Abstract [en]

Effects of the spatial chancl ling (SC) of the energy of fusion-produced alpha particles- the spatial transfer of the energy of fast ions by destabilized eigenmodes and delivering this energy to bulk plasma particles (Kolesnichenko et al 2010 Phys. Rev. Lett. 104 075001)-on the plasma performance is studied. Analysis is carried out in the assumption that alpha particles located in the peripheral region of the plasma destabilize multiple fast magnetoacoustic modes (FMM) having global radial structure. The FMM with the frequencies close to cyclotron harmonics of alpha particles are considered. It is found that these FMM can be in resonance with the bulk plasma ions and electrons located in the central region of the plasma, delivering the alpha energy to this region. This improves the overall plasma confinement. In addition, it leads to anomalous ion heating when the ion damping of FMM exceeds the electron one. The damping rates of the considered waves are calculated. It is shown dial reasonably small amplitude waves can receive and transfer across the flux surfaces as large power density as that required for spatial channelling of a considerable part of fusion energy. The developed theory of the inward spatial channelling is applied to JET experiments carried out during the deuterium-tritium-experiment campaign (DTE1), where presumably anomalous ion heating and improvement of die plasma confinement took place.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD , 2018. Vol. 58, no 7, article id 076012
Keywords [en]
tokamaks, energetic ions, alpha particles, waves, eigenmodes, instabilities
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:uu:diva-398320DOI: 10.1088/1741-4326/aac09fISI: 000433067400002OAI: oai:DiVA.org:uu-398320DiVA, id: diva2:1377297
Note

For complete list of authors see http://dx.doi.org/10.1088/1741-4326/aac09f

Available from: 2019-12-11 Created: 2019-12-11 Last updated: 2019-12-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Andersson Sundén, ErikBinda, FedericoCecconello, MarcoConroy, SeanDzysiuk, NataliiaEricsson, GöranEriksson, JacobHellesen, CarlHjalmarsson, AndersPossnert, GöranSjöstrand, HenrikSkiba, MateuszWeiszflog, Matthias

Search in DiVA

By author/editor
Andersson Sundén, ErikBinda, FedericoCecconello, MarcoConroy, SeanDzysiuk, NataliiaEricsson, GöranEriksson, JacobHellesen, CarlHjalmarsson, AndersPossnert, GöranSjöstrand, HenrikSkiba, MateuszWeiszflog, Matthias
By organisation
Applied Nuclear Physics
In the same journal
Nuclear Fusion
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf