uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Geodesic acoustic mode evolution in L-mode approaching the L-H transition on JET
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Show others and affiliations
Number of Authors: 12292019 (English)In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 61, no 7, article id 075007Article in journal (Refereed) Published
Abstract [en]

Geodesic acoustic modes (GAMs) may generate strong oscillations in the radial electric field and therefore are considered as a possible trigger mechanism for the L-H transition. This contribution focuses on the characterization of GAMs in JET plasmas when approaching the L-H transition aiming at understanding their possible role in triggering the transition. GAM and turbulence characteristics are measured at the plasma edge using Doppler backscattering for different plasma current and line-averaged densities. The radial location of the GAM often moves further inside when neutral beam injection is applied possibly as a response to changes in the turbulence drive. GAMs are found to have modest amplitude at the transition except for high density discharges where GAMs are stronger, suggesting that the GAM is not responsible for facilitating the transition as the L-H power threshold also increases with density in the high density branch of the L-H transition. Our results suggest that the GAM alone does not play a leading role for causing the L-H transition at JET.

Place, publisher, year, edition, pages
Institute of Physics Publishing (IOPP), 2019. Vol. 61, no 7, article id 075007
Keywords [en]
geodesic acoustic modes, turbulence, L-H transition, doppler backscattering
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:uu:diva-398718DOI: 10.1088/1361-6587/ab1e73ISI: 000469803900001OAI: oai:DiVA.org:uu-398718DiVA, id: diva2:1377574
Note

For complete list of authors see http://dx.doi.org/10.1088/1361-6587/ab1e73

Available from: 2019-12-12 Created: 2019-12-12 Last updated: 2019-12-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Andersson Sundén, ErikBinda, FedericoCecconello, MarcoConroy, SeanDzysiuk, NataliiaEricsson, GöranEriksson, JacobHellesen, CarlHjalmarsson, AndersPossnert, GöranSjöstrand, HenrikSkiba, MateuszWeiszflog, Matthias

Search in DiVA

By author/editor
Andersson Sundén, ErikBinda, FedericoCecconello, MarcoConroy, SeanDzysiuk, NataliiaEricsson, GöranEriksson, JacobHellesen, CarlHjalmarsson, AndersPossnert, GöranSjöstrand, HenrikSkiba, MateuszWeiszflog, Matthias
By organisation
Applied Nuclear PhysicsTandem Laboratory
In the same journal
Plasma Physics and Controlled Fusion
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf