uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Direct gyrokinetic comparison of pedestal transport in JET with carbon and ITER-like walls
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Show others and affiliations
Number of Authors: 12332019 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 8, article id 086056Article in journal (Refereed) Published
Abstract [en]

This paper compares the gyrokinetic instabilities and transport in two representative JET pedestals, one (pulse 78697) from the JET configuration with a carbon wall (C) and another (pulse 92432) from after the installation of JET's ITER-like Wall (ILW). The discharges were selected for a comparison of JET-ILW and JET-C discharges with good confinement at high current (3 MA, corresponding also to low ρ*) and retain the distinguishing features of JET-C and JET-ILW, notably, decreased pedestal top temperature for JET-ILW. A comparison of the profiles and heating power reveals a stark qualitative difference between the discharges: the JET-ILW pulse (92432) requires twice the heating power, at a gas rate of 1.9 x 1022 e s-1, to sustain roughly half the temperature gradient of the JET-C pulse (78697), operated at zero gas rate. This points to heat transport as a central component of the dynamics limiting the JET-ILW pedestal and reinforces the following emerging JET-ILW pedestal transport paradigm, which is proposed for further examination by both theory and experiment. ILW conditions modify the density pedestal in ways that decrease the normalized pedestal density gradient a/Ln, often via an outward shift in relation to the temperature pedestal. This is attributable to some combination of direct metal wall effects and the need for increased fueling to mitigate tungsten contamination. The modification to the density profile increases η = Ln/LT, thereby producing more robust ion temperature gradient (ITG) and electron temperature gradient driven instability. The decreased pedestal gradients for JET-ILW (92432) also result in a strongly reduced E x B shear rate, further enhancing the ion scale turbulence. Collectively, these effects limit the pedestal temperature and demand more heating power to achieve good pedestal performance. Our simulations, consistent with basic theoretical arguments, find higher ITG turbulence, stronger stiffness, and higher pedestal transport in the ILW plasma at lower ρ*.

Place, publisher, year, edition, pages
2019. Vol. 59, no 8, article id 086056
Keywords [en]
pedestal, gyrokinetics, JET, transport
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:uu:diva-398829DOI: 10.1088/1741-4326/ab25bdISI: 000474756400004OAI: oai:DiVA.org:uu-398829DiVA, id: diva2:1377816
Note

For complete list of authors see http://dx.doi.org/10.1088/1741-4326/ab25bd

Available from: 2019-12-12 Created: 2019-12-12 Last updated: 2019-12-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Andersson Sundén, ErikBinda, FedericoCecconello, MarcoConroy, SeanDzysiuk, NataliiaEricsson, GöranEriksson, JacobHellesen, CarlHjalmarsson, AndersPossnert, GöranSjöstrand, HenrikSkiba, MateuszWeiszflog, Matthias

Search in DiVA

By author/editor
Andersson Sundén, ErikBinda, FedericoCecconello, MarcoConroy, SeanDzysiuk, NataliiaEricsson, GöranEriksson, JacobHellesen, CarlHjalmarsson, AndersPossnert, GöranSjöstrand, HenrikSkiba, MateuszWeiszflog, Matthias
By organisation
Applied Nuclear Physics
In the same journal
Nuclear Fusion
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf