uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Heavy Metal Susceptibility of Escherichia coli Isolated from Urine Samples from Sweden, Germany, and Spain.
Show others and affiliations
2018 (English)In: Antimicrobial Agents and Chemotherapy, ISSN 0066-4804, E-ISSN 1098-6596, Vol. 62, no 5, article id e00209-18Article in journal (Refereed) Published
Abstract [en]

Antimicrobial resistance is a major health care problem, with the intensive use of heavy metals and biocides recently identified as a potential factor contributing to the aggravation of this situation. The present study investigated heavy metal susceptibility and genetic resistance determinants in Escherichia coli isolated from clinical urine samples from Sweden, Germany, and Spain. A total of 186 isolates were tested for their sodium arsenite, silver nitrate, and copper(II) sulfate MICs. In addition, 88 of these isolates were subjected to whole-genome sequencing for characterization of their genetic resistance determinants and epidemiology. For sodium arsenite, the isolates could be categorized into a resistant and a nonresistant group based on MIC values. Isolates of the resistant group exhibited the chromosomal ars operon and belonged to non-B2 phylogenetic groups; in contrast, within the B2 phylogroup, no ars operon was found, and the isolates were susceptible to sodium arsenite. Two isolates also harbored the silver/copper resistance determinant pco/sil, and they belonged to sequence types ST10 (phylogroup A) and ST295 (phylogroup C). The ST295 isolate had a silver nitrate MIC of ≥512 mg/liter and additionally produced extended-spectrum beta-lactamases. To our knowledge, this is the first study to describe the distribution of the arsenic resistance ars operon within phylogroups of E. coli strains isolated from patients with urinary tract infections. The arsenic resistance ars operon was present only in all non-B2 clades, which have previously been associated with the environment and commensalism in both humans and animals, while B2 clades lacked the ars operon.

Place, publisher, year, edition, pages
2018. Vol. 62, no 5, article id e00209-18
Keywords [en]
Escherichia coli, antibiotic resistance, arsenic, heavy metal resistance, silver
National Category
Microbiology in the medical area
Identifiers
URN: urn:nbn:se:uu:diva-399820DOI: 10.1128/AAC.00209-18PubMedID: 29530862OAI: oai:DiVA.org:uu-399820DiVA, id: diva2:1379213
Available from: 2019-12-16 Created: 2019-12-16 Last updated: 2019-12-16

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed
In the same journal
Antimicrobial Agents and Chemotherapy
Microbiology in the medical area

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf