uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrodialytic per- and polyfluoroalkyl substances (PFASs) removal mechanism for contaminated soil
Swedish University of Agricultural Sciences (SLU).
Swedish University of Agricultural Sciences (SLU).ORCID iD: 0000-0001-8318-1553
Technical University of Denmark, Department of Civil Engineering,.
Swedish University of Agricultural Sciences (SLU).
2019 (English)In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 232, p. 224-231Article in journal (Refereed) Published
Abstract [en]

Contamination of soils with per- and polyfluoroalkyl substances (PFASs) is a global problem, in particular at fire-fighter training sites due to the usage of PFAS-containing aqueous fire-fighting foams (AFFFs). In this study, an electrodialytic remediation method was applied for the first time to remove PFASs from contaminated soil. The electrodialytic remediation system was evaluated in a laboratory-scale experiment with current densities of 0.19 mA cm−2 and 0.38 mA cm−2 over 21 days, using PFAS-contaminated soil from a fire-fighter training site at Stockholm Arlanda Airport, Sweden. Of the 23 PFASs targeted, significant (p < 0.05) PFAS electromigration towards the anode was observed for C3-C7 perfluoroalkyl carboxylates (PFCAs) (PFBA, PFPeA, PFHxA, PFOA) and C4, C6, and C8 perfluoroalkane sulfonates (PFSAs) (PFBS, PFHxS, PFOS) since these PFASs were predominantly negatively charged. In contrast to the electromigration of the charged PFASs, N-methyl perfluorooctane sulfonamide (MeFOSA), perfluorooctane sulfonamidoacetic acid (FOSAA) and ethyl FOSAA (EtFOSAA) showed significant (p < 0.05) transport towards the cathode, which is probably attributed to electro-osmotic flow of these predominantly neutral PFASs. Mass balance calculations showed that for the shortest-chained PFASs (i.e., PFBA, PFPeA, PFHxA, PFBS, and PFHxS), up to 20% was extracted from the soil to the anolyte, which showed that electrodialysis is a possible in-situ remediation technique for PFAS-contaminated soil.

Place, publisher, year, edition, pages
2019. Vol. 232, p. 224-231
Keywords [en]
PFAS, remediation, electrokinetic, electrodialysis
National Category
Other Environmental Engineering
Identifiers
URN: urn:nbn:se:uu:diva-399960DOI: 10.1016/j.chemosphere.2019.05.088OAI: oai:DiVA.org:uu-399960DiVA, id: diva2:1379540
Available from: 2019-12-17 Created: 2019-12-17 Last updated: 2020-01-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Niarchos, Georgios

Search in DiVA

By author/editor
Niarchos, Georgios
In the same journal
Chemosphere
Other Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf