uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Gyrokinetic modeling of impurity peaking in JET H-mode plasmas
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Show others and affiliations
Number of Authors: 11142017 (English)In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 24, no 6, article id 062511Article in journal (Refereed) Published
Abstract [en]

Quantitative comparisons are presented between gyrokinetic simulations and experimental values of the carbon impurity peaking factor in a database of JET H-modes during the carbon wall era. These plasmas feature strong NBI heating and hence high values of toroidal rotation and corresponding gradient. Furthermore, the carbon profiles present particularly interesting shapes for fusion devices, i.e., hollow in the core and peaked near the edge. Dependencies of the experimental carbon peaking factor (R/L-nC) on plasma parameters are investigated via multilinear regressions. A marked correlation between R/L-nC and the normalised toroidal rotation gradient is observed in the core, which suggests an important role of the rotation in establishing hollow carbon profiles. The carbon peaking factor is then computed with the gyrokinetic code GKW, using a quasi-linear approach, supported by a few non-linear simulations. The comparison of the quasi-linear predictions to the experimental values at mid-radius reveals two main regimes. At low normalised collisionality, nu*, and T-e/T-i < 1, the gyrokinetic simulations quantitatively recover experimental carbon density profiles, provided that rotodiffusion is taken into account. In contrast, at higher nu* and T-e/T-i > 1, the very hollow experimental carbon density profiles are never predicted by the simulations and the carbon density peaking is systematically over estimated. This points to a possible missing ingredient in this regime.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2017. Vol. 24, no 6, article id 062511
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:uu:diva-399836DOI: 10.1063/1.4985330ISI: 000404639000041OAI: oai:DiVA.org:uu-399836DiVA, id: diva2:1380146
Note

For complete list of authors see http://dx.doi.org/10.1063/1.4985330

Available from: 2019-12-18 Created: 2019-12-18 Last updated: 2019-12-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Andersson Sundén, ErikBinda, FedericoCecconello, MarcoConroy, SeanDzysiuk, NataliiaEricsson, GöranEriksson, JacobHellesen, CarlHjalmarsson, AndersPossnert, GöranHjalmarsson, AndersSkiba, MateuszWeiszflog, Matthias

Search in DiVA

By author/editor
Andersson Sundén, ErikBinda, FedericoCecconello, MarcoConroy, SeanDzysiuk, NataliiaEricsson, GöranEriksson, JacobHellesen, CarlHjalmarsson, AndersPossnert, GöranHjalmarsson, AndersSkiba, MateuszWeiszflog, Matthias
By organisation
Applied Nuclear Physics
In the same journal
Physics of Plasmas
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf