uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interfacial aspect of ZnTe/In2Te3 heterostructures as an efficient catalyst for the hydrogen evolution reaction
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Southwest Univ Sci & Technol, Natl Collaborat Innovat Ctr Nucl Waste & Environm, Mianyang 621010, Sichuan, Peoples R China.
Royal Inst Technol KTH, Dept Mat & Engn, Appl Mat Phys, S-10044 Stockholm, Sweden.
Southwest Univ Sci & Technol, Natl Collaborat Innovat Ctr Nucl Waste & Environm, Mianyang 621010, Sichuan, Peoples R China.
Southwest Univ Sci & Technol, Natl Collaborat Innovat Ctr Nucl Waste & Environm, Mianyang 621010, Sichuan, Peoples R China.
Show others and affiliations
2019 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 7, no 48, p. 27441-27449Article in journal (Refereed) Published
Abstract [en]

In the class of two-dimensional (2D) materials, group III2-VI3 compounds have drawn intense attention due to its excellent surface properties. In this work, based on first-principles calculations, we have systematically investigated the structural, electronic, optical and photocatalytic properties of a ZnTe/In2Te3 heterostructure, along with its interfacial effects, to design an efficient photocatalyst. We have employed hydrogen adsorption free energy (Delta G(H*)) as a key parameter to demonstrate the enhancement in photocatalytic activity of ZnTe/In2Te3 compared to a pristine In2Te3 monolayer, which is further verified with the explicit water environment. The underlying mechanism is governed by the partial charge distributions of pristine In2Te3 and ZnTe/In2Te3 heterostructures. The presence of the ZnTe monolayer also altered the bandgap of the In2Te3 monolayer from an indirect gap of 1.238 eV to direct gaps of 0.298 eV and 0.181 eV in A- and B-type interfaces of the ZnTe/In2Te3 heterostructure, respectively. Calculated optical absorption spectra indicate that ZnTe/In2Te3 heterostructures possess better sunlight-harvesting capability compared to monolayer In2Te3 near the infrared and visible light regions, implying their potential as an excellent light-absorber. Our predictions provide new guidance for designing 2D III2-VI3 heterostructures and expand the applications of these materials in photovoltaics, photocatalysts, and other nanodevices in the future.

Place, publisher, year, edition, pages
2019. Vol. 7, no 48, p. 27441-27449
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-400764DOI: 10.1039/c9ta09687fISI: 000502302300023OAI: oai:DiVA.org:uu-400764DiVA, id: diva2:1382479
Funder
Swedish Research Council, 2016-06014
Note

De 2 första författarna delar förstaförfattarskapet.

Available from: 2020-01-03 Created: 2020-01-03 Last updated: 2020-01-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Yang, XiaoyongAhuja, Rajeev

Search in DiVA

By author/editor
Yang, XiaoyongAhuja, Rajeev
By organisation
Materials Theory
In the same journal
Journal of Materials Chemistry A
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf