uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spatiotemporal analysis of historical records (2001-2012) on dengue fever in Vietnam and development of a statistical model for forecasting risk.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.ORCID iD: 0000-0002-1175-0398
Show others and affiliations
2019 (English)In: PLoS ONE, E-ISSN 1932-6203, Vol. 14, no 11, article id e0224353Article in journal (Refereed) Published
Abstract [en]

BACKGROUND: Dengue fever is the most widespread infectious disease of humans transmitted by Aedes mosquitoes. It is the leading cause of hospitalization and death in children in the Southeast Asia and western Pacific regions. We analyzed surveillance records from health centers in Vietnam collected between 2001-2012 to determine seasonal trends, develop risk maps and an incidence forecasting model.

METHODS: The data were analyzed using a hierarchical spatial Bayesian model that approximates its posterior parameter distributions using the integrated Laplace approximation algorithm (INLA). Meteorological, altitude and land cover (LC) data were used as predictors. The data were grouped by province (n = 63) and month (n = 144) and divided into training (2001-2009) and validation (2010-2012) sets. Thirteen meteorological variables, 7 land cover data and altitude were considered as predictors. Only significant predictors were kept in the final multivariable model. Eleven dummy variables representing month were also fitted to account for seasonal effects. Spatial and temporal effects were accounted for using Besag-York-Mollie (BYM) and autoregressive (1) models. Their levels of significance were analyzed using deviance information criterion (DIC). The model was validated based on the Theil's coefficient which compared predicted and observed incidence estimated using the validation data. Dengue incidence predictions for 2010-2012 were also used to generate risk maps.

RESULTS: The mean monthly dengue incidence during the period was 6.94 cases (SD 14.49) per 100,000 people. Analyses on the temporal trends of the disease showed regular seasonal epidemics that were interrupted every 3 years (specifically in July 2004, July 2007 and September 2010) by major fluctuations in incidence. Monthly mean minimum temperature, rainfall, area under urban settlement/build-up areas and altitude were significant in the final model. Minimum temperature and rainfall had non-linear effects and lagging them by two months provided a better fitting model compared to using unlagged variables. Forecasts for the validation period closely mirrored the observed data and accurately captured the troughs and peaks of dengue incidence trajectories. A favorable Theil's coefficient of inequality of 0.22 was generated.

CONCLUSIONS: The study identified temperature, rainfall, altitude and area under urban settlement as being significant predictors of dengue incidence. The statistical model fitted the data well based on Theil's coefficient of inequality, and risk maps generated from its predictions identified most of the high-risk provinces throughout the country.

Place, publisher, year, edition, pages
2019. Vol. 14, no 11, article id e0224353
National Category
Veterinary Science
Identifiers
URN: urn:nbn:se:uu:diva-400976DOI: 10.1371/journal.pone.0224353PubMedID: 31774823OAI: oai:DiVA.org:uu-400976DiVA, id: diva2:1382678
Available from: 2020-01-03 Created: 2020-01-03 Last updated: 2020-01-03

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Lindahl, Johanna

Search in DiVA

By author/editor
Lindahl, Johanna
By organisation
Department of Medical Biochemistry and Microbiology
In the same journal
PLoS ONE
Veterinary Science

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf