uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Limb-bone development of seymouriamorphs: implications for the evolution of growth strategy in stem amniotes
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology.
(Department of Ecology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava)
(European Synchrotron Radiation Facility, Grenoble, France)
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology.
(English)In: Frontiers in Earth Science, ISSN 2296-6463Article in journal (Refereed) Submitted
Abstract [en]

Tetrapod life on land was the result of a lengthy process, the final steps of which resulted in full independence of amniotic tetrapods from the aquatic environment. Developmental strategies, including growth rate and the attainment of sexual maturity, played a major role in this transition. Early amniotes, such as Ophiacodon, tended to reach sexual maturity in a year while most non-amniotic Paleozoic tetrapods (including Devonian tetrapods and temnospondyls) became adult after 3 to 11 years. This ontogenetic transition is accompanied by a drastic change in growth rate and bone microstructure suggesting faster growth dynamics in early amniotes than in Devonian tetrapods and temnospondyls. Was the acquisition of a faster development (earlier sexual maturity and faster growth rate) a drastic evolutionary event or an extended process over geological time? To answer this question, the limb bone histology of two Early Permian (i.e. 270-290 million-year-old) stem-amniote seymouriamorphs, Seymouria sanjuanensis and Discosauriscus austriacus, were investigated. We used three-dimensional bone paleohistology based on propagation phase-contrast synchrotron microtomography. Both seymouriamorphs display relatively fast bone growth and dynamics (even though cyclic in the humerus of D. austriacus). This significantly contrasts with the slow primary bone deposition encountered in the stylopods of temnospondyls and Devonian (i.e. 360 million-year-old) stem tetrapods of similar sizes. On the basis of skeletochronological data, the seymouriamorph D. austriacus retained a long pre-reproductive period as observed in Devonian tetrapods and most temnospondyls. The combination of characteristics (faster growth rate but long pre-reproductive period) suggests that the shift towards an amniotic developmental strategy was an extended process in the evolutionary history of amniotes.

Keywords [en]
life history, early tetrapods, synchrotron imaging, three-dimensional paleohistology, cortical microstructure.
National Category
Other Natural Sciences
Identifiers
URN: urn:nbn:se:uu:diva-405960OAI: oai:DiVA.org:uu-405960DiVA, id: diva2:1411071
Available from: 2020-03-02 Created: 2020-03-02 Last updated: 2020-03-03
In thesis
1.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Estefa, Jordi
By organisation
Department of Organismal Biology
In the same journal
Frontiers in Earth Science
Other Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 83 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf