uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparative genomics of closely related Wolbachia strains infecting Drosophila
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution.
IAEA Division of Nuclear Techniques in Food and Agriculture.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Cytoplasmic incompatibility (CI) is the most common form of reproductive manipulation induced by the vertically inherited endosymbiont Wolbachia. The phenotype causes partial or complete sterility in crosses between infected males and non-infected females, thus benefiting infected females in the population and the spread of the bacteria. Because of these properties, CI-inducing Wolbachia has been implicated as a mean for biological pest control. Although CI has been known for several decades, the first CI-associated genes, cifA and cifB, were only recently discovered. In this study, we sequenced five complete Wolbachia genomes (wSan, wYak, wTei, wAu, wMa,) and performed comparative genomic analyses between these and four previously published complete Wolbachia genomes (wRi, wNo, wHa, wMel), that have all had their CI properties tested in the same genetic host background, Drosophila simulans STC. Using these genomes, we investigate what types of genes differ between closely related Wolbachia strains and compare the sequences from some of the strains in their natural host vs. after transfer to D. simulans STC. We find that phage-associated and hypothetical genes are likely to vary more between genomes and that very few mutations have occurred when strains were transferred to D. simulans. Furthermore, we investigate the evolution of the known CI genes and take advantage of the highly similar genomes of some strains as well as their complex CI properties to identify further genes associated with both mod and resc functions of CI.

National Category
Evolutionary Biology
Research subject
Biology with specialization in Molecular Evolution
Identifiers
URN: urn:nbn:se:uu:diva-406756OAI: oai:DiVA.org:uu-406756DiVA, id: diva2:1414021
Available from: 2020-03-11 Created: 2020-03-11 Last updated: 2020-03-12
In thesis
1.
The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.

Open Access in DiVA

No full text in DiVA

Authority records BETA

Baiao, Guilherme CostaKlasson, Lisa

Search in DiVA

By author/editor
Baiao, Guilherme CostaKlasson, Lisa
By organisation
Molecular EvolutionScience for Life Laboratory, SciLifeLab
Evolutionary Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 325 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf