uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Magnetic Reconnection in Three Dimensions: Modeling and Analysis of Electromagnetic Drift Waves in the Adjacent Current Sheet
Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA.
Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA.
Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA.
Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA.
Show others and affiliations
2019 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 124, no 12, p. 10085-10103Article in journal (Refereed) Published
Abstract [en]

We present a model of electromagnetic drift waves in the current sheet adjacent to magnetic reconnection at the subsolar magnetopause. These drift waves are potentially important in governing 3-D structure of subsolar magnetic reconnection and in generating turbulence. The drift waves propagate nearly parallel to the X line and are confined to a thin current sheet. The scale size normal to the current sheet is significantly less than the ion gyroradius and can be less than or on the order of the wavelength. The waves also have a limited extent along the magnetic field (B), making them a three-dimensional eigenmode structure. In the current sheet, the background magnitudes of B and plasma density change significantly, calling for a treatment that incorporates an inhomogeneous plasma environment. Using detailed examination of Magnetospheric Multiscale observations, we find that the waves are best represented by series of electron vortices, superimposed on a primary electron drift, that propagate along the current sheet (parallel to the X line). The waves displace or corrugate the current sheet, which also potentially displaces the electron diffusion region. The model is based on fluid behavior of electrons, but ion motion must be treated kinetically. The strong electron drift along the X line is likely responsible for wave growth, similar to a lower hybrid drift instability. Contrary to a classical lower hybrid drift instability, however, the strong changes in the background B and n(o), the normal confinement to the current sheet, and the confinement along B are critical to the wave description.

Place, publisher, year, edition, pages
AMER GEOPHYSICAL UNION , 2019. Vol. 124, no 12, p. 10085-10103
National Category
Fusion, Plasma and Space Physics Geophysics
Identifiers
URN: urn:nbn:se:uu:diva-406731DOI: 10.1029/2019JA027275ISI: 000509195700023OAI: oai:DiVA.org:uu-406731DiVA, id: diva2:1415598
Available from: 2020-03-19 Created: 2020-03-19 Last updated: 2020-03-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Graham, Daniel B.

Search in DiVA

By author/editor
Graham, Daniel B.
By organisation
Swedish Institute of Space Physics, Uppsala Division
In the same journal
Journal of Geophysical Research - Space Physics
Fusion, Plasma and Space PhysicsGeophysics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf