Open this publication in new window or tab >>Show others...
2022 (English)In: Developmental Dynamics, ISSN 1058-8388, E-ISSN 1097-0177, Vol. 251, no 9, p. 1535-1549Article in journal (Refereed) Published
Abstract [en]
The development of the vertebrate skeleton requires a complex interaction of multiple factors to facilitate correct shaping and positioning of bones and joints. Growth and differentiation factor 5 (Gdf5), a member of the transforming growth factor-beta family (TGF-beta) is involved in patterning appendicular skeletal elements including joints. Expression of gdf5 in zebrafish has been detected within the first pharyngeal arch jaw joint, fin mesenchyme condensations and segmentation zones in median fins, however little is known about the functional role of Gdf5 outside of Amniota.
We generated CRISPR/Cas9 knockout of gdf5 in zebrafish and analysed the resulting phenotype at different developmental stages. Homozygous gdf5 mutant zebrafish display truncated median fin endoskeletal elements and loss of posterior radials in the pectoral fins.
These findings are consistent with phenotypes observed in human and mouse appendicular skeleton in response to Gdf5 knockout, suggesting a broadly conserved role for Gdf5 in Osteichthyes.
Place, publisher, year, edition, pages
John Wiley & Sons, 2022
Keywords
gdf5, fin, joints, zebrafish, appendicular skeleton, CRISPR/Cas9 mutant
National Category
Developmental Biology
Identifiers
urn:nbn:se:uu:diva-430383 (URN)10.1002/dvdy.399 (DOI)000678743100001 ()
Funder
Swedish Research Council, 621-2012-4673Science for Life Laboratory, SciLifeLab
2021-01-082021-01-082024-10-16Bibliographically approved