uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Accuracy and Convergence Studies of the Numerical Solution of Compressible Flow Problems
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
1997 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The numerical solution of compressible flow problems governed by the Navier-Stokes equations is considered. A finite volume method is used for the discretization in space. Different techniques to accelerate the convergence to a steady state are suggested, and the accuracy of the spatial difference operator is analyzed.

By treating one spatial direction implicitly, it is possible to modify an explicit Runge-Kutta time-marching method, leading to a semi-implicit scheme. A thorough investigation of the stability and convergence properties is presented. Moreover, the scheme is used as a smoother in a multigrid method, and is reformulated as a preconditioner for a number of Newton-Krylov methods. The semi-implicit approach is shown to be very effective for meshes with high aspect ratios. For the flow over a flat plate with a thin boundary layer, the number of iterations to reach convergence is independent of the Reynolds number (Re).

An alternative approach for accelerating the convergence is to apply an optimal semicirculant approximation of the spatial operator as a preconditioner. Also here, significant speedups are demonstrated for high Re flows.

Two problems appearing for solvers used in computational fluid dynamics are examined. Methods for updating the ghost cells in a multigrid multiblock algorithm are studied, and the accuracy of the finite volume method applied to a polar mesh is analyzed. Although polar mesh singularities lead to a reduction of the order of the truncation error, the global error is shown to be of practically the same order as for a uniform mesh.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 1997. , 17 p.
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1104-232X ; 316
Keyword [en]
computational fluid dynamics, Navier-Stokes equations, convergence acceleration, preconditioning, semi-implicit, multiblock, multigrid, finite volume method
National Category
Computational Mathematics
Research subject
Numerical Analysis
URN: urn:nbn:se:uu:diva-119ISBN: 91-554-4059-2OAI: oai:DiVA.org:uu-119DiVA: diva2:160743
Public defence
1997-11-07, Room 2347, Polacksbacken, Uppsala University, Uppsala, 10:15 (English)
Available from: 1997-10-17 Created: 1997-10-17 Last updated: 2015-06-03Bibliographically approved

Open Access in DiVA

No full text
Buy this publication >>

By organisation
Department of Scientific ComputingNumerical Analysis
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 665 hits
ReferencesLink to record
Permanent link

Direct link