uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Peptide Mapping of Proteins in Human Body Fluids using Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Analytical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Analytical Chemistry.
Show others and affiliations
2002 (English)In: Mass spectrometry reviews (Print), ISSN 0277-7037, E-ISSN 1098-2787, Vol. 21, no 1, 2-15 p.Article in journal (Refereed) Published
Abstract [en]

Human body fluids have been rediscovered in the postgenomic era as great sources of biological markers and perhaps particularly as sources of potential protein biomarkers of disease. Analytical tools that allow rapid screening, low sample consumption, and accurate protein identification are of great importance in studies of complex biological samples and clinical diagnosis. Mass spectrometry is today one of the most important analytical tools with applications in a wide variety of fields. One of the fastest growing applications is in proteomics, or the study of protein expression in an organism. Mass spectrometry has been used to find post-translational modifications and to identify key functions of proteins in the human body. In this study, we review the use of human body fluids as sources for clinical markers and present new data that show the ability of Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) to identify, and characterize proteins in four human body fluids: plasma, cerebrospinal fluid (CSF), saliva, and urine. The body fluids were tryptically digested without any prior separation, purification, or selection, and the digest was introduced into a 9.4 T FTICR mass spectrometer by direct-infusion electrospray ionization (ESI). Even though these samples represent complex biological mixtures, the described method provides information that is comparable with traditional 2D-PAGE data. The sample consumption is extremely low, a few microliters, and the analysis time is only a few minutes. It is, however evident that the separation of proteins and/or peptides must be included in the methodology in order to detect low-abundance proteins and other proteins of biological relevance.

Place, publisher, year, edition, pages
2002. Vol. 21, no 1, 2-15 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-89819DOI: 10.1002/mas.10016OAI: oai:DiVA.org:uu-89819DiVA: diva2:161604
Available from: 2002-04-23 Created: 2002-04-23 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Identification and Characterization of Peptides and Proteins using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
Open this publication in new window or tab >>Identification and Characterization of Peptides and Proteins using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
2002 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Mass spectrometry has in recent years been established as the standard method for protein identification and characterization in proteomics with excellent intrinsic sensitivity and specificity. Fourier transform ion cyclotron resonance is the mass spectrometric technique that provides the highest resolving power and mass accuracy, increasing the amount of information that can be obtained from complex samples. This thesis concerns how useful information on proteins of interest can be extracted from mass spectrometric data on different levels of protein structure and how to obtain this data experimentally. It was shown that it is possible to analyze complex mixtures of protein tryptic digests by direct infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and identify abundant proteins by peptide mass fingerprinting. Coupling on-line methods such as liquid chromatography and capillary electrophoresis increased the number of proteins that could be identified in human body fluids. Protein identification was also improved by novel statistical methods utilizing prediction of chromatographic behavior and the non-randomness of enzymatic digestion. To identify proteins by short sequence tags, electron capture dissociation was implemented, improved and finally coupled on-line to liquid chromatography for the first time. The combined techniques can be used to sequence large proteins de novo or to localize and characterize any labile post-translational modification. New computer algorithms for the automated analysis of isotope exchange mass spectra were developed to facilitate the study of protein structural dynamics. The non-covalent interaction between HIV-inhibitory peptides and the oligomerization of amyloid β-peptides were investigated, reporting several new findings with possible relevance for development of anti-HIV drug therapies and understanding of fundamental mechanisms in Alzheimer’s disease.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2002. 76 p.
Series
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1104-232X ; 706
Keyword
Materials science, Peptide, protein, peptide mass fingerprinting, identification, sequencing, protein structure, non-covalent interaction, modification, electrospray ionization, liquid chromatography, capillary electrophoresis, electron capture dissociation, Fourier transform ion cyclotron resonance mass spectrometry, cerebrospinal fluid, amyloid β-peptide, Alzheimer’s disease., Materialvetenskap
National Category
Materials Engineering
Research subject
Molecular Biotechnology
Identifiers
urn:nbn:se:uu:diva-1999 (URN)91-554-5296-5 (ISBN)
Public defence
2002-05-17, Siegbahnsalen, Uppsala, 10:00 (English)
Opponent
Available from: 2002-04-23 Created: 2002-04-23 Last updated: 2010-01-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Bergquist, JonasWetterhall, Magnus

Search in DiVA

By author/editor
Bergquist, JonasWetterhall, Magnus
By organisation
Analytical ChemistryDepartment of Materials Science
In the same journal
Mass spectrometry reviews (Print)
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 953 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf