uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Haematological toxicity following different dosing schedules of 5-fluorouracil and epirubicin in rats
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences, Division of Pharmacokinetics and Drug Therapy.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences, Division of Pharmacokinetics and Drug Therapy.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
Show others and affiliations
2000 (English)In: Anticancer Research, ISSN 0250-7005, Vol. 20, no 3A, 1519-1525 p.Article in journal (Refereed) Published
Abstract [en]

AIM

To study the effects of single and fractionated doses of 5-fluorouracil and epirubicin on the leukocyte counts in rats.

METHODS

Six different dosing patterns of each drug were injected within one day. The leukocytes were followed for 11-15 days. Pharmacokinetic models were developed using NONMEM. Quantitative and qualitative pharmacokinetic-pharmacodynamic relationships were investigated.

RESULTS

A one-compartment model with non-linear elimination described 5-fluorouracil pharmacokinetics and a three-compartment model described epirubicin concentration data. Sigmoidal or basic Emax-models quantified the relationships between individual AUCs and decreases in leukocytes, for both drugs. Similar relationships between AUC and toxicity were found, regardless of whether the drugs were given as single or fractionated doses.

CONCLUSION

Quantitative relationships between AUC and the effect on leukocytes were established for 5-fluorouracil and epirubicin. However, no schedule dependence was indicated for the schedules used in the study.

Place, publisher, year, edition, pages
2000. Vol. 20, no 3A, 1519-1525 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-90233PubMedID: 10928065OAI: oai:DiVA.org:uu-90233DiVA: diva2:162522
Available from: 2003-04-15 Created: 2003-04-15 Last updated: 2011-10-07Bibliographically approved
In thesis
1. Pharmacokinetic-Pharmacodynamic Modelling of Anticancer Drugs: Haematological Toxicity and Tumour Response in Hollow Fibres
Open this publication in new window or tab >>Pharmacokinetic-Pharmacodynamic Modelling of Anticancer Drugs: Haematological Toxicity and Tumour Response in Hollow Fibres
2003 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Established quantitative relationships between dose, plasma concentrations and response [pharmacokinetic-pharmacodynamic (PKPD) models] have a high potential in improving therapeutic indices of anticancer drug therapy and in increasing drug development efficiency. PKPD modelling is a helpful tool for characterising and understanding schedule dependence. The aim of this thesis was to develop PKPD models of anticancer drugs for tumour effects and haematological toxicity, which is the most frequent dose-limiting toxicity.

PK and haematological toxicity after several schedules were studied in rats and semi-physiological PKPD models for the whole time course of myelosuppression were developed from animal and patient data. The possibility to implant hollow fibres filled with tumour cells in immunocompetent rats was investigated for simultaneous assessment of PK, tumour response and haematological toxicity. Population data analyses were performed using the software NONMEM.

When all injections were administered within eight hours, fractionated schedules of 5-fluorouracil and epirubicin produced similar haematological toxicity in rats as a single dose, when the non-linear PK of 5-fluorouracil was accounted for. When the time interval was extended to two days for 5-fluorouracil, the fractionated regimens were more toxic.

The developed semi-physiological PKPD models included transit compartments that mimic maturation stages in bone marrow and explain the time lag. Feedback mechanisms characterised the rebound. The models successfully described myelosuppression in patients (DMDC) and rats (5-fluorouracil), after different administration schedules. Further developments made it possible to characterise the time course of myelosuppression after administration of each one of six different drugs, with parameters related to the haematopoietic system consistent across drugs.

The developed hollow fibre model in immunocompetent rats was successfully applied to monitor PK, toxicity and the time course of antitumour effects. PKPD modelling illustrated that the schedule dependence of the anticancer agent CHS 828 is partly due to dose-dependent bioavailability and partly due to a schedule-dependent PD effect.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2003. 71 p.
Series
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, ISSN 0282-7484 ; 286
Keyword
Pharmacokinetics/Pharmacotherapy, Farmakokinetik/Farmakoterapi
National Category
Pharmaceutical Sciences
Research subject
Pharmacokinetics and Drug Therapy
Identifiers
urn:nbn:se:uu:diva-3370 (URN)91-554-5587-5 (ISBN)
Public defence
2003-05-09, B41, BMC, Uppsala, 09:15
Opponent
Supervisors
Available from: 2003-04-15 Created: 2003-04-15Bibliographically approved

Open Access in DiVA

No full text

PubMed

Authority records BETA

Karlsson, Mats O.

Search in DiVA

By author/editor
Karlsson, Mats O.
By organisation
Division of Pharmacokinetics and Drug TherapyDepartment of Pharmaceutical Biosciences
In the same journal
Anticancer Research
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 564 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf