uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Systematic spectral features in the neutron emission from NB heated JET DT plasmas
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Neutron Research.
Show others and affiliations
Manuscript (Other academic)
URN: urn:nbn:se:uu:diva-90604OAI: oai:DiVA.org:uu-90604DiVA: diva2:163020
Available from: 2003-05-28 Created: 2003-05-28 Last updated: 2010-01-13Bibliographically approved
In thesis
1. Neutron Spectroscopy Studies of Heating Effects in Fusion Plasmas
Open this publication in new window or tab >>Neutron Spectroscopy Studies of Heating Effects in Fusion Plasmas
2003 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

High power fusion plasmas produced in the world’s largest facility for magnetic confinement experiments (JET), have been studied using the neutron emission measured with the magnetic proton recoil (MPR) spectrometer. The MPR has been used to observe plasmas since 1996 including those of deuterium-tritium leading to several fusion records and corresponding observational achievements of neutron emission spectroscopy. Noteworthy are novel studies of the complex states of fuel ions arising through plasma heating by neutral beam (NB) injection and radio frequency (RF) power.

This thesis concerns the analysis of MPR data on the neutron emission from NB heated discharges alone and in combination with RF. A main objective of these studies has been the effect of supra-thermal fuel ion reactions on the fusion power as compared to the basic thermal component. The analysis was based on dedicated models to describe the velocity distributions of the ion population under the influence of the NB and RF heating in a parametric form allowing trial neutron spectra to be calculated and fitted to the data to select the kinetic state of the fuel ions that best described the MPR observations.

Spectral signatures of different underlying plasma states and phenomena were identified and results from up to five different ion reaction contributions to the fusion power were demonstrated besides the global plasma features of toroidal rotation. Moreover, the thesis presents examples of derived detailed plasma information from MPR data such as the kinetic energy densities for the thermal and supra-thermal parts of the fuel ion population as well as the synergetic coupling of RF power to the fast ions from NB injection. The results constitute a stepping-stone for neutron emission spectroscopy as a main diagnostic for ITER and other future fusion experiments on thermonuclear ignition.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2003. viii, 52 p.
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1104-232X ; 861
Nuclear physics, neutron emission spectroscopy, diagnostic, fusion research, plasma heating, Kärnfysik
National Category
Subatomic Physics
Research subject
Applied Nuclear Physics
urn:nbn:se:uu:diva-3492 (URN)91-554-5678-2 (ISBN)
Public defence
2003-09-12, Häggsalen (10132), Ångströmlaboratoriet, Uppsala, 09:15
Available from: 2003-05-28 Created: 2003-05-28Bibliographically approved

Open Access in DiVA

No full text

By organisation
Department of Neutron Research

Search outside of DiVA

GoogleGoogle Scholar

Total: 132 hits
ReferencesLink to record
Permanent link

Direct link