uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Measurement of nucleobase pKa values in model mononucleotides shows RNA-RNA duplexes to be more stable than DNA-DNA duplexes
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Bioorganic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Bioorganic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Bioorganic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Bioorganic Chemistry.
Show others and affiliations
2004 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 126, no 9, 2862-2869 p.Article in journal (Refereed) Published
Abstract [en]

To understand why the RNA-RNA duplexes in general has a higher thermodynamic stability over the corresponding DNA-DNA duplexes, we have measured the pK(a) values of both nucleoside 3',5'-bis-ethyl phosphates [Etp(d/rN)pEt] and nucleoside 3'-ethyl phosphates [(d/rN)pEt] (N = A, G, C, or T/U), modeling as donors and acceptors of base pairs in duplexes. While the 3',5'-bis-phosphates, Etp(d/rN)pEt, mimic the internucleotidic monomeric units of DNA and RNA, in which the stacking contribution is completely absent, the 3'-ethyl phosphates, (d/rN)pEt, mimic the nucleotide at the 5'-end. The pK(a) values of the nucleobase in each of these model nucleoside phosphates have been determined with low pK(a) error (sigma = +/-0.01 to 0.02) by (1)H NMR (at 500 MHz) with 20-33 different pH measurements for each compound. This study has led us to show the following: (1) All monomeric DNA nucleobases are more basic than the corresponding RNA nucleobases in their respective Etp(d/rN)pEt and (d/rN)pEt. (2) The pK(a) values of the monomeric nucleotide blocks as well as Delta pK(a) values between the donor and acceptor can be used to understand the relative base-pairing strength in the oligomeric duplexes in the RNA and DNA series. (3) The Delta G*(pKa) of the donor and acceptor of the base pair in duplexes enables a qualitative dissection of the relative strength of the base-pairing and stacking in the RNA-RNA over the DNA-DNA duplexes. (4) It is also found that the relative contribution of base-pairing strength and nucleobase stacking in RNA-RNA over DNA-DNA is mutually compensating as the % A-T/U content increases or decreases. This interdependency of stacking and hydrogen bonding can be potentially important in the molecular design of the base-pair mimics to expand the alphabet of the genetic code.

Place, publisher, year, edition, pages
2004. Vol. 126, no 9, 2862-2869 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:uu:diva-91152DOI: 10.1021/ja0386546PubMedID: 14995203OAI: oai:DiVA.org:uu-91152DiVA: diva2:163774
Available from: 2003-11-26 Created: 2003-11-26 Last updated: 2013-09-25Bibliographically approved
In thesis
1. Studies on the Non-covalent Interactions (Stereoelectronics, Stacking and Hydrogen Bonding) in the Self-assembly of DNA and RNA
Open this publication in new window or tab >>Studies on the Non-covalent Interactions (Stereoelectronics, Stacking and Hydrogen Bonding) in the Self-assembly of DNA and RNA
2003 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is based on ten publications (Papers I-X). The phosphodiester backbone makes DNA or RNA to behave as polyelectrolyte, the pentose sugar gives the flexibility, and the aglycones promote the self-assembly or the ligand-binding process. The hydrogen bonding, stacking, stereoelectronics and hydration are few of the important non-covalent forces dictating the self-assembly of DNA/RNA. The pH-dependent thermodynamics clearly show (Papers I and II) that a change of the electronic character of aglycone modulates the conformation of the sugar moiety by the tunable interplay of stereoelectronic anomeric and gauche effects, which are further transmitted to steer the sugar-phosphate backbone conformation in a cooperative manner. 3'-anthraniloyl adenosine (a mimic of 3'-teminal CCAOH of the aminoacyl-tRNAPhe) binds to EF-Tu*GTP in preference over 2'-anthraniloyl adenosine, thereby showing (Paper III) that the 2’-endo sugar conformation is a more suitable mimic of the transition state geometry than the 3’-endo conformation in discriminating between correctly and incorrectly charged aminoacyl-tRNAPhe by EF-Tu during protein synthesis. The presence of 2'-OH in RNA distinguishes it from DNA both functionally as well as structurally. This work (Paper IV) provides straightforward NMR evidence to show that the 2'-OH is intramolecularly hydrogen bonded with the vicinal 3'-oxygen, and the exposure of the 3'-phosphate of the ribonucleotides to the bulk water determines the availability of the bound water around the vicinal 2'-OH, which then can play various functional role through inter- or intramolecular interactions. The pH-dependent 1H NMR study with nicotinamide derivatives demonstrates (Paper V) that the cascade of intramolecular cation (pyridinium)-π(phenyl)-CH(methyl) interaction in edge-to-face geometry is responsible for perturbing the pKa of the pyridine-nitrogen as well as for the modulation of the aromatic character of the neighboring phenyl moiety, which is also supported by the T1 relaxation studies and ab initio calculations. It has been found (Papers VI-IX) that the variable intramolecular electrostatic interaction between electronically coupled nearest neighbor nucleobases (steered by their respective microenvironments) can modulate their respective pseudoaromatic characters. The net result of this pseudoaromatic cross-modulation is the creation of a unique set of aglycones in an oligo or polynucleotide, whose physico-chemical properties are completely dependent upon the propensity and geometry of the nearest neighbor interactions (extended genetic code). The propagation of the interplay of these electrostatic interactions across the hexameric ssDNA chain is considerably less favoured (effectively up to the fourth nucleobase) compared to that of the isosequential ssRNA (up to the sixth nucleobase). The dissection of the relative strength of basepairing and stacking in a duplex shows that stability of DNA-DNA duplex weakens over the corresponding RNA-RNA duplexes with the increasing content of A-T/U base pairs, while the strength of stacking of A-T rich DNA-DNA duplex increases in comparison with A-U rich sequence in RNA-RNA duplexes (Paper X).

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2003. 54 p.
Series
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1104-232X ; 914
Keyword
Bioorganic chemistry, nucleic acids, NMR, Stereoelectronic effects, Hydrogen Bonding, Stacking, Bioorganisk kemi
National Category
Organic Chemistry
Identifiers
urn:nbn:se:uu:diva-3825 (URN)91-554-5821-1 (ISBN)
Public defence
2003-12-19, B7:113a, Floor 1, Biomedical Centre, Husargatan 3, Uppsala, 13:00
Opponent
Supervisors
Available from: 2003-11-26 Created: 2003-11-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Chatterjee, Sunanda

Search in DiVA

By author/editor
Chatterjee, Sunanda
By organisation
Department of Bioorganic Chemistry
In the same journal
Journal of the American Chemical Society
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1135 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf