Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Aqueous Exfoliation of Transition Metal Oxides for Energy Storage and Photocatalysis Applications: Vanadium Oxide and Molybdenum Oxide Nanosheets
Stockholms universitet, Institutionen för material- och miljökemi (MMK).ORCID iD: 0000-0003-0358-2379
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Two-dimensional (2D) transition metal oxides (TMOs) are a category of materials which have unique physical and chemical properties compared to their bulk counterparts. However, the synthesis of 2D TMOs commonly includes the use of environmental threats such as organic solvents. In this thesis, we developed environmentally friendly strategies to fabricate TMO nanosheets from the commercially available bulk oxides. In particular, hydrated vanadium pentoxide (V2O5∙nH2O) nanosheets and oxygen deficient molybdenum trioxide (MoO3-x) nanosheets were prepared.  The V2O5∙nH2O nanosheets were drop-cast onto multi-walled carbon nanotube (MWCNT) paper and applied as a free-standing electrode (FSE) for a lithium battery. The accessible capacity of the FSE was dependent on the electrode thickness; the thickest electrode delivered the lowest accessible capacity.  Alternatively, a composite material of V2O5∙nH2O nanosheets with 10% MWCNT (VOx-CNT composite) was prepared and two types of electrodes, FSE and conventionally cast electrode (CCE), were employed as cathode materials for lithium batteries. A detailed comparison between these electrodes was presented. In addition, the VOx-CNT composite was applied as a negative electrode for a sodium-ion battery and showed a reversible capacity of about 140 mAh g-1. On the other hand, the MoO3-x nanosheets were employed as binder-free electrodes for supercapacitor application in an acidified Na2SO4 electrolyte. Furthermore, the MoO3-x nanosheets were used as photocatalysts for organic dye degradation. The simple eco-friendly synthesis methods coupled with the potential application of the TMO nanosheets reflect the significance of this thesis in both the synthesis and the energy-related applications of 2D materials.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry (MMK), Stockholm University , 2019. , p. 61
Keywords [en]
aqueous exfoliation, vanadium oxide nanosheets, molybdenum oxide nanosheets, energy storage, photocatalysis
National Category
Inorganic Chemistry
Research subject
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-470162ISBN: 978-91-7797-514-4 (print)ISBN: 978-91-7797-515-1 (electronic)OAI: oai:DiVA.org:uu-470162DiVA, id: diva2:1646067
Public defence
2019-02-06, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, 10:00 (English)
Opponent
Supervisors
Available from: 2022-03-28 Created: 2022-03-21 Last updated: 2022-07-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Thesis in fulltext

Authority records

Etman, Ahmed S.

Search in DiVA

By author/editor
Etman, Ahmed S.
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 57 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf