uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Calculation of surface stress for fcc transition metals
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Condensed Matter Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Condensed Matter Theory.
2003 (English)In: Physical Review B Condensed Matter, ISSN 0163-1829, E-ISSN 1095-3795, Vol. 68, no 24, 245417- p.Article in journal (Refereed) Published
Abstract [en]

Using the density functional theory, formulated within the framework of the exact muffin-tin orbitals method, we have calculated the surface stress for the (111) free surfaces of the fcc 4d and 5d transition metals. Good agreement is obtained with the available ab initio data for Pd, Ir, and Au, while for Pt we predict a surface stress, which is about 33% lower compared to former theoretical results. The present surface stress values for the 4d and 5d fcc metals show the typical trend characteristic for the cohesive or surface energies of d series.

Place, publisher, year, edition, pages
2003. Vol. 68, no 24, 245417- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-92010DOI: 10.1103/PhysRevB.68.245417OAI: oai:DiVA.org:uu-92010DiVA: diva2:164945
Available from: 2004-09-01 Created: 2004-09-01 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Density Functional Theory in Computational Materials Science
Open this publication in new window or tab >>Density Functional Theory in Computational Materials Science
2004 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The present thesis is concerned to the application of first-principles self-consistent total-energy calculations within the density functional theory on different topics in materials science.

Crystallographic phase-transitions under high-pressure has been study for TiO2, FeI2, Fe3O4, Ti, the heavy alkali metals Cs and Rb, and C3N4. A new high-pressure polymorph of TiO2 has been discovered, this new polymorph has an orthorhombic OI (Pbca) crystal structure, which is predicted theoretically for the pressure range 50 to 100 GPa. Also, the crystal structures of Cs and Rb metals have been studied under high compressions. Our results confirm the recent high-pressure experimental observations of new complex crystal structures for the Cs-III and Rb-III phases. Thus, it is now certain that the famous isostructural phase transition in Cs is rather a new crystallographic phase transition.

The elastic properties of the new superconductor MgB2 and Al-doped MgB2 have been investigated. Values of all independent elastic constants (c11, c12, c13, c33, and c55) as well as bulk moduli in the a and c directions (Ba and Bc respectively) are predicted. Our analysis suggests that the high anisotropy of the calculated elastic moduli is a strong indication that MgB2 should be rather brittle. Al doping decreases the elastic anisotropy of MgB2 in the a and c directions, but, it will not change the brittle behaviour of the material considerably.

The three most relevant battery properties, namely average voltage, energy density and specific energy, as well as the electronic structure of the Li/LixMPO4 systems, where M is either Fe, Mn, or Co have been calculated. The mixing between Fe and Mn in these materials is also examined. Our calculated values for these properties are in good agreement with recent experimental values. Further insight is gained from the electronic density of states of these materials, through which conclusions about the physical properties of the various phases are made.

The electronic and magnetic properties of the dilute magnetic semiconductor Mn-doped ZnO has been calculated. We have found that for an Mn concentration of 5.6%, the ferromagnetic configuration is energetically stable in comparison to the antiferromgnetic one. A half-metallic electronic structure is calculated by the GGA approximation, where Mn ions are in a divalent state leading to a total magnetic moment of 5 μB per Mn atom.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2004. 49 p.
Series
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1104-232X ; 1001
Keyword
Physics, Density Functional Theory, High Pressure, Phase Transitions, Elastic Properties, Lithium Batteries, Dilute Magnetic Semiconductors, Fysik
National Category
Physical Sciences
Identifiers
urn:nbn:se:uu:diva-4496 (URN)91-554-6016-X (ISBN)
Public defence
2004-09-24, Polhemsalen, Ångström Laboratory, Lägerhyddsvägen 1, Uppsala, 10:15
Opponent
Supervisors
Available from: 2004-09-01 Created: 2004-09-01 Last updated: 2012-03-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Vitos, LeventeAhuja, Rajeev

Search in DiVA

By author/editor
Vitos, LeventeAhuja, Rajeev
By organisation
Condensed Matter Theory
In the same journal
Physical Review B Condensed Matter
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 522 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf