Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Gaussian MLE versus the Optimally weighted LSE
Division of Decision and Control Systems in the School of Electrical Engineering and Computer Science at KTH Royal Institute of Technology, Stockholm, Sweden.ORCID iD: 0000-0001-5474-7060
Division of Decision and Control Systems in the School of Electrical Engineering and Computer Science at KTH Royal Institute of Technology, Stockholm, Sweden.ORCID iD: 0000-0002-9368-3079
Division of Decision and Control Systems in the School of Electrical Engineering and Computer Science at KTH Royal Institute of Technology, Stockholm, Sweden.ORCID iD: 0000-0002-1927-1690
2020 (English)In: IEEE signal processing magazine (Print), ISSN 1053-5888, E-ISSN 1558-0792, Vol. 37, no 6, p. 195-199Article in journal (Refereed) Published
Abstract [en]

In this note, we derive and compare the asymptotic covariance matrices of two parametric estimators: the Gaussian Maximum Likelihood Estimator (MLE), and the optimally weighted Least-Squares Estimator (LSE). We assume a general model parameterization where the model's mean and variance are jointly parameterized, and consider Gaussian and non-Gaussian data distributions.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2020. Vol. 37, no 6, p. 195-199
Keywords [en]
Gaussian MLE, optimally weighted LSE, least squares, optimal weighting, semi-parametric models, parameter estimation, system identification
National Category
Signal Processing Control Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:uu:diva-474182DOI: 10.1109/MSP.2020.3019236ISI: 000587684700018Scopus ID: 2-s2.0-85096226071OAI: oai:DiVA.org:uu-474182DiVA, id: diva2:1657190
Funder
Swedish Research Council, 2016-06079 (NewLEADS), 2015-05285, and 2019-04956
Note

QC 20200529

Available from: 2022-05-10 Created: 2022-05-10 Last updated: 2022-05-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopusFulltext

Authority records

Abdalmoaty, Mohamed

Search in DiVA

By author/editor
Abdalmoaty, MohamedHjalmarsson, HåkanWahlberg, Bo
In the same journal
IEEE signal processing magazine (Print)
Signal ProcessingControl Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 259 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf