uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Layered compound Nb3SiC2 predicted from first-principles theory
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
Show others and affiliations
2004 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 85, no 15, 3071-3073 p.Article in journal (Refereed) Published
Abstract [en]

A previously unobserved ternary carbide, Nb3SiC2, belonging to the family of the so-called Mn+1AXn or MAX phases is predicted from first-principles calculations. It has a theoretical bulk modulus of 296 Gpa, wich is much higher than that of Ti3SiC2. The new phase is metastable with a formation energy of +0.02 eV/atom. We suggest that the phase may possibly be synthesized using thin film technology. The chemical binding of Nb3SiC2 is investigated using the balanced crystal orbital overlap population indicator and it is found to be dominated by the formation of Nb4D-C 2p covalent bonds.

Place, publisher, year, edition, pages
2004. Vol. 85, no 15, 3071-3073 p.
National Category
Physical Sciences Inorganic Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-92690DOI: 10.1063/1.1791734OAI: oai:DiVA.org:uu-92690DiVA: diva2:165861
Available from: 2005-03-10 Created: 2005-03-10 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Theoretical Studies of Two-Dimensional Magnetism and Chemical Bonding
Open this publication in new window or tab >>Theoretical Studies of Two-Dimensional Magnetism and Chemical Bonding
2005 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is divided into two parts. In the first part we study thermodynamics of the two-dimensional Heisenberg ferromagnet with dipolar interaction. This interaction breaks the conditions of the Mermin-Wagner theorem, resulting in a finite transition temperature. Our calculations are done within the framework of the self-consistent spin-wave theory (SSWT), which is modified in order to include the dipolar interaction. Both quantum and classical versions of the Heisenberg model are considered.

The second part of the thesis investigates the chemical bonding in solids from the first principles calculations. A new chemical bonding indicator called balanced crystal orbital overlap population (BCOOP) is developed. BCOOP is less basis set dependent than the earlier indicators and it can be used with full-potential density-functional theory (DFT) codes. We apply BCOOP formalism to the chemical bonding in the high-T_c superconductor MgB2 and the theoretically predicted MAX phase Nb3SiC2. We also study how the chemical bonding results in a repulsive hydrogen–hydrogen interaction in metal hydrides. The role of this interaction in the structural phase transition in Ti3SnHx is investigated.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2005. vii + 87 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 21
Keyword
Physics, spin Hamiltonians, quantized spin models, Heisenberg model, spin waves, self-consistent spin-wave theory, dipolar interaction, density functional theory, chemical bonding, overlap population, MAX phases, metal hydrides, Fysik
National Category
Physical Sciences
Identifiers
urn:nbn:se:uu:diva-4815 (URN)91-554-6164-6 (ISBN)
Public defence
2005-04-01, Siegbahnsalen, Ångström Laboratory, Lägerhyddsvägen 1, Uppsala, 10:15
Opponent
Supervisors
Available from: 2005-03-10 Created: 2005-03-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Ahuja, RajeevEriksson, OlleJansson, UlfWilhelmsson, Ola

Search in DiVA

By author/editor
Ahuja, RajeevEriksson, OlleJansson, UlfWilhelmsson, Ola
By organisation
Department of PhysicsInorganic Chemistry
In the same journal
Applied Physics Letters
Physical SciencesInorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 964 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf